WTA (weapon-target allocation) of air defense operation is a very complicated problem and current models focus on static and restricted WTA problem mostly. Based on the dynamic characteristics of air defense operati...WTA (weapon-target allocation) of air defense operation is a very complicated problem and current models focus on static and restricted WTA problem mostly. Based on the dynamic characteristics of air defense operational command and decision of warships' formation, a dynamic WTA model is established. Simulation results show that switch fire and repetition fire of anti-air weapon system affect the result of the air defense operation remarkably and the dynamic model is more satisfying than static ones. Related results are gained based on the analysis of the simulation results and the results are accordant with the intuitionistic tactical judgment. The model is some reference for the research of air defense C^3I system of warships' formation.展开更多
In order to solve the problem that the ripple-effect analy- sis for the operational architecture of air defense systems (OAADS) is hardly described in quantity with previous modeling approaches, a supernetwork model...In order to solve the problem that the ripple-effect analy- sis for the operational architecture of air defense systems (OAADS) is hardly described in quantity with previous modeling approaches, a supernetwork modeling approach for the OAADS is put for- ward by extending granular computing. Based on that operational units and links are equal to different information granularities, the supernetwork framework of the OAADS is constructed as a “four- network within two-layer” structure by forming dynamic operating coalitions, and measuring indexes of the ripple-effect analysis for the OAADS are given combining with Laplace spectral radius. In this framework, via analyzing multidimensional attributes which inherit relations between operational units in different granular scales, an extended granular computing is put forward integrating with a topological structure. Then the operation process within the supernetwork framework, including transformation relations be- tween two layers in the vertical view and mapping relations among functional networks in the horizontal view, is studied in quantity. As the application case shows, comparing with previous modeling approaches, the supernetwork model can validate and analyze the operation mechanism in the air defense architecture, and the ripple-effect analysis can be used to confirm the key operational unit with micro and macro viewpoints.展开更多
The air traffic management system(ATM)has the task of ensuring safe,orderly and expeditious flow of air traffic.The ATM system architecture is very much dependent on the concept of operations(ConOps).Over the years th...The air traffic management system(ATM)has the task of ensuring safe,orderly and expeditious flow of air traffic.The ATM system architecture is very much dependent on the concept of operations(ConOps).Over the years the evolution in ConOps has resulted in changes in the ATM′s physical architecture,improving its physical infrastructure,increasing the levels of automation and making operational changes to improve air traffic flow,to cope with increasing demand for air travel.However,what is less clear is the impact of such changes in ConOps on the ATM′s functional architecture.This is vital for ensuring optimality in the implementation of the physical architecture components to support the ATM functions.This paper reviews the changes in the ConOps over the years,proposes a temporally invariant ATM functional model,and discusses some of the main key technologies expected to make significant improvements to the ATM system.展开更多
The article analyses the problem of determining the operating parameters of the district heating substation cooperating with the air heating system in technological air conditioning systems equipped with heat exchange...The article analyses the problem of determining the operating parameters of the district heating substation cooperating with the air heating system in technological air conditioning systems equipped with heat exchangers with high efficiency of heat recovery.Attention was paid to the correct selection of heat exchangers for the heat output balance depending on the heat recovery protection algorithms against a drop in the temperature of the heat transfer surface below 0℃.Critical parameters were determined in Polish climatic conditions,at which the operation of the heat recovery exchanger in the air conditioning system is switched off or limited.It has been proven that the proper functioning of the district heating substation cooperating with the installation of air conditioning with high heat recovery efficiency requires the use of two heat exchangers with different characteristics,equipped with properly selected temperature control systems.The optimal model of cooperation between the technological air conditioning system and the heating substation was also indicated.展开更多
The area of operations management has had a substantial effect on the today’s air transportation management.Having moved with huge demand from management to obtain a competitive advantage in the market,the airlines a...The area of operations management has had a substantial effect on the today’s air transportation management.Having moved with huge demand from management to obtain a competitive advantage in the market,the airlines are utilizing advanced optimization techniques to develop decision support systems for operations management and control.In order to provide a service with high quality and low cost,airlines spend a tremendous amount of resources and effort to generate profitable and cost-effective fare classes,flight schedules,fleet plans,aircraft routes,crew scheduling,gate assignment,etc.In this paper,the techniques and operations management applications that are used in the air transportation industry are reviewed including demand forecasting,fleet assignment,aircraft routing,crew scheduling,runway scheduling problem and gate assignment.展开更多
This paper investigates the feedback control of hidden Markov process(HMP) in the face of loss of some observation processes.The control action facilitates or impedes some particular transitions from an inferred cur...This paper investigates the feedback control of hidden Markov process(HMP) in the face of loss of some observation processes.The control action facilitates or impedes some particular transitions from an inferred current state in the attempt to maximize the probability that the HMP is driven to a desirable absorbing state.This control problem is motivated by the need for judicious resource allocation to win an air operation involving two opposing forces.The effectiveness of a receding horizon control scheme based on the inferred discrete state is examined.Tolerance to loss of sensors that help determine the state of the air operation is achieved through a decentralized scheme that estimates a continuous state from measurements of linear models with additive noise.The discrete state of the HMP is identified using three well-known detection schemes.The sub-optimal control policy based on the detected state is implemented on-line in a closed-loop,where the air operation is simulated as a stochastic process with SimEvents,and the measurement process is simulated for a range of single sensor loss rates.展开更多
A low-power complementary metal oxide semiconductor(CMOS) operational amplifier (op-amp) for real-time signal processing of micro air vehicle (MAV) is designed in this paper.Traditional folded cascode architectu...A low-power complementary metal oxide semiconductor(CMOS) operational amplifier (op-amp) for real-time signal processing of micro air vehicle (MAV) is designed in this paper.Traditional folded cascode architecture with positive channel metal oxide semiconductor(PMOS) differential input transistors and sub-threshold technology are applied under the low supply voltage.Simulation results show that this amplifier has significantly low power,while maintaining almost the same gain,bandwidth and other key performances.The power required is only 0.12 mW,which is applicable to low-power and low-voltage real-time signal acquisition and processing system.展开更多
In the modem development,the aircraft has become one of the main tools for people's daily travel and the development of the social industry,which promotes the development of the civil aviation.In the composition o...In the modem development,the aircraft has become one of the main tools for people's daily travel and the development of the social industry,which promotes the development of the civil aviation.In the composition of airlines,dispatch is one of the representatives of the important work,and we should establish an effective management system.Under the function of this system,to do a good job in the air dispatch is not only conducive to guaranteeing the normal operation of flights,but is also conducive to further promoting the development of the civil aviation industry.In this regard,this paper focuses on the discussion and study of the management system of the air dispatch in the flight operation.展开更多
Mycoflora of atmospheric air and dust samples collected from air conditioning systems in 12 of each I.C.U. (intensive care units) and O.R. (operation rooms) were tested using settle and dilution plate methods on f...Mycoflora of atmospheric air and dust samples collected from air conditioning systems in 12 of each I.C.U. (intensive care units) and O.R. (operation rooms) were tested using settle and dilution plate methods on four types of agar media and incubated at 25℃. Forty-five fungal species representing 23 genera were isolated and identified. The most prevalent genera recorded were Cladosporium, Aspergillus, Penicillium and Fusarium. The total colony forming units of airborne fungi recovered in I.C.U. and O.R. ranged between 31.13-49.61 colonies/m3 on the four types of media usedl The fungal total catch of the dust samples collected from the air conditioning system filters in I.C.U. and O.R. were ranged from 65.5-170 colonies/mg dust. Since, the interest to replace synthetic xenobiotics by natural compounds with low environmental persistence and biodegradable to control such airborne fungal contaminants is needed. In this respect, essential oils showed to possess a broad spectrum of antifungal activity. Fungal static ability of six oils was tested on 30 different fungal isolates. Vapors of common thyme oil exhibited the strongest inhibitory effects on the tested isolates, whereas the headspace vapors of blue gum and ginger had no inhibitory effects on the tested fungal isolates. These data revealed that the air conditioning systems may be an important source of contamination in I.C.U. and O.R. of Assiut university hospitals. Thus, patients may be in risk of being exposed to contaminated atmospheric air by opportunistic fungi and the use of essential oils as an alternative option to control hospital wards from fungal contaminants needs further studies.展开更多
Air traffic controllers face challenging initiatives due to uncertainty in air traffic.One way to support their initiatives is to identify similar operation scenes.Based on the operation characteristics of typical bus...Air traffic controllers face challenging initiatives due to uncertainty in air traffic.One way to support their initiatives is to identify similar operation scenes.Based on the operation characteristics of typical busy area control airspace,an complexity measurement indicator system is established.We find that operation in area sector is characterized by aggregation and continuity,and that dimensionality and information redundancy reduction are feasible for dynamic operation data base on principle components.Using principle components,discrete features and time series features are constructed.Based on Gaussian kernel function,Euclidean distance and dynamic time warping(DTW)are used to measure the similarity of the features.Then the matrices of similarity are input in Spectral Clustering.The clustering results show that similar scenes of trend are not ideal and similar scenes of modes are good base on the indicator system.Finally,actual vertical operation decisions for area sector and results of identification are compared,which are visualized by metric multidimensional scaling(MDS)plots.We find that identification results can well reflect the operation at peak hours,but controllers make different decisions under the similar conditions before dawn.The compliance rate of busy operation mode and division decisions at peak hours is 96.7%.The results also show subjectivity of actual operation and objectivity of identification.In most scenes,we observe that similar air traffic activities provide regularity for initiatives,validating the potential of this approach for initiatives and other artificial intelligence support.展开更多
The free-piston engine generator(FPEG)is regarded as the next generation of energy conversion system which may replace traditional engines in the future.The effect of key operational parameters like excess air ratio o...The free-piston engine generator(FPEG)is regarded as the next generation of energy conversion system which may replace traditional engines in the future.The effect of key operational parameters like excess air ratio of input mixture and ignition position on the engine performance of a dual-cylinder FPEG was investigated,and their sensitivity was analyzed in this paper.The operating compression ratio of the system is susceptible to changes in excess air ratio and ignition position.At the same time,it decreases from 15.8 to 6.6 when excess air ratio increases from 0.85 to 1.15,but it increases from 6.1 to 13.3 as ignition position increases from 15 mm to 20 mm.The operating frequency and indicated power are more sensitive to changes in excess air ratio than ignition position.But it is the opposite for the indicated thermal efficiency and friction loss.Excess air ratio and ignition position have a quite similar influence on heat transfer.Therefore,from the perspective of system operation and performance,it is preferable to keep excess air coefficient slightly below 1.0.In contrast,when selecting ignition position,it is of great importance to comprehensively consider the risk of structural damage caused by the increase in the compression ratio and in-cylinder gas pressure.展开更多
A study on performances of different ventilation schemes provided by vertical and horizontal uni-directional air flow was carried out in a standard orthopaedic operating theatre (OT). Starting from our previous studie...A study on performances of different ventilation schemes provided by vertical and horizontal uni-directional air flow was carried out in a standard orthopaedic operating theatre (OT). Starting from our previous studies of a real OT under operating use conditions, in this research different air flow configurations, considering some air curtain solutions on the ceiling and at the sliding door always assumed to be open as a basic boundary condition, were investigated by numerical simulations. Indoor air quality (IAQ) indexes and thermal comfort parameters, deduced from simulation results were calculated and discussed referring to the best performance and efficacy between the air flow schemes to contrast the incorrect use conditions of the OT. Referring to the studied schemes, the reciprocal comparison emphasizes that a successful outcome in preventing surgical site infection can depend as much on resolving human factors (i.e. operational use conditions, door opening/closing), as on overcoming physical and technical obstacles.展开更多
The influence of outside inertial shock combined with RF signal voltages on the properties of a shunt capacitive MEMS switch encapsulated in a low vacuum environment is analyzed considering the damping of the air arou...The influence of outside inertial shock combined with RF signal voltages on the properties of a shunt capacitive MEMS switch encapsulated in a low vacuum environment is analyzed considering the damping of the air around the MEMS switch membrane. An analytical expression that approximately computes the displacement induced by outside shock is obtained. According to the expression, the minimum required mechanical stiffness constant of an MEMS switch beam in some maximum tolerated insertion loss condition and some external inertial shock environment or the insertion loss induced by external inertial shock can also be obtained. The influence is also illustrated with an RF MEMS capacitive switch example,which shows that outside environment factors have to be taken into account when designing RF MEMS capacitive switches working in low vacuum. While encapsulating RF MEMS switches in low vacuum diminishes the air damping and improves the switch speed and operation voltage,the performances of a switch is incident to being influenced by outside environment. This study is very useful for the optimized design of RF MEMS capacitive switches working in low vacuum.展开更多
Room air conditioners (RACs) are crucial household appliances that consume substantial amounts of electricity. Their efficiency tends to deteriorate over time, resulting in unnecessary energy wastage. Smart meters hav...Room air conditioners (RACs) are crucial household appliances that consume substantial amounts of electricity. Their efficiency tends to deteriorate over time, resulting in unnecessary energy wastage. Smart meters have become popular to monitor electricity use of home appliances, offering underexplored opportunities to evaluate RAC operational efficiency. Traditional supervised data-driven analysis methods necessitate a large sample size of RACs and their efficiency, which can be challenging to acquire. Additionally, the prevalence of zero values when RACs are off can skew training. To overcome these challenges, we assembled a dataset comprising a limited number of window-type RACs with measured operational efficiencies from 2021. We devised an intuitive zero filter and resampling protocol to process smart meter data and increase training samples. A deep learning-based encoder–decoder model was developed to evaluate RAC efficiency. Our findings suggest that our protocol and model accurately classify and regress RAC operational efficiency. We verified the usefulness of our approach by evaluating the RACs replaced in 2022 using 2022 smart meter data. Our case study demonstrates that repairing or replacing an inefficient RAC can save electricity by up to 17 %. Overall, our study offers a potential energy conservation solution by leveraging smart meters for regularly assessing RAC operational efficiency and facilitating smart preventive maintenance.展开更多
Oscillating Water Column (OWC) wave energy converting system is one of the most widely used facilities all over the world. The air chamber is utilized to convert the wave energy into the pneumatic energy. The numeri...Oscillating Water Column (OWC) wave energy converting system is one of the most widely used facilities all over the world. The air chamber is utilized to convert the wave energy into the pneumatic energy. The numerical wave tank based on the two-phase VOF model is established in the present study toinvestigate the operating performance of OWC air chamber. The RANS equations, standard k-ε turbulence model and dynamic mesh technology are employed in the numerical model. The effects of incident wave conditions and shape parameters on the wave energy converting efficiency are studied and the capability of the present numerical wave tank on the corresponding engineering application is validated.展开更多
Compressed air pumped hydro energy storage equipment combines compressed air energy storage technology and pumped storage technology. The water is pumped to a vessel to compress air for energy storage, and the compres...Compressed air pumped hydro energy storage equipment combines compressed air energy storage technology and pumped storage technology. The water is pumped to a vessel to compress air for energy storage, and the compressed air expanses pushing water to drive the hydro turbine for power generation. The novel storage equipment saves natural gas resources, reduces carbon emission, and improves the controllability and reliability. The principle of compressed air pumped hydro energy storage is introduced and its mathematical model is built. The storage and generation process of the novel equipment is analyzed using the model. The calculation formula of the storage power is deduced in theory in different situations of isothermal and adiabatic compression. The optimal storage scheme is given when the capacity and withstand pressure of the vessel is definitive, and the max available capacity and the equipment utilization efficiency evaluation of the scheme is given.展开更多
This paper presents a short contribution in air transportation, specifically in scheduling aircraft (plane) landings at Léopol Sédar Senghor (LSS) airport of Dakar. The safety of air navigation of LSS is man...This paper presents a short contribution in air transportation, specifically in scheduling aircraft (plane) landings at Léopol Sédar Senghor (LSS) airport of Dakar. The safety of air navigation of LSS is managed by ASECNA: Agency for Air Navigation Safety in Africa and Madagascar. Scheduling aircraft landing is the problem of deciding a landing time on an appropriate runway for each aircraft in a given set of aircraft such that each aircraft lands within a predetermined time window. The separation criteria between the landing of an aircraft, and the landing of all successive aircraft, are respected. Our objective is to minimize the cost of deviation from the target times. We present a mixed-integer 0 - 1 formulation for the single runway case. Numerical experiments and comparisons based on real datasets of LSS airport are presented.展开更多
As fate and transport of air emissions from animal housing systems is of increasing concern, dispersion models have become commonly used tools to estimate the downwind concentrations of pollutants at certain locations...As fate and transport of air emissions from animal housing systems is of increasing concern, dispersion models have become commonly used tools to estimate the downwind concentrations of pollutants at certain locations surrounding the animal production farms. In application of Gaussian dispersion model for downwind concentration predictions of animal housing emissions, unknown plume rise (△h) and plume shape of the horizontally emitted plumes from animal housing systems have been vital weak points challenging the accuracy of the model predictions. This paper reports an inverse AERMOD modeling study to derive the plum rises of PM10 emissions from mechanically ventilated egg production houses based upon field measurements of PM10 emission rate, downwind concentrations, and meteorological conditions. In total, 87 hourly plume rises were found for 20 days (five days per season for four seasons, from fall 2008 to summer 2009). The mean plume rises for fall 2008, winter 2008, spring 2009 and summer 2009 were 16.2 m (SE = 11.2 m), 7.9 m (SE = 9.5 m), 16.5 m (SE = 12.4 m), and 14.3 m (SE = 10.0 m), respectively. The relationships between plume rises and various factors were tested. While the diurnal patterns of the plume rises were not consistent among different selective days, they generally followed the diurnal patterns of house ventilation rates. Plume rise for weekends were significantly higher than those for weekdays in fall. Multiple linear regression showed a significant positive relationship (p = 0.0134) between wind speed and the plume rises. Ambient relative humidity and total volume flow were also found to be slightly (p = 0.171 and 0.217, respectively) related to the plume rises.展开更多
The use of artificial intelligence(AI)has increased since the middle of the 20th century,as evidenced by its applications to a wide range of engineering and science problems.Air traffic management(ATM)is becoming incr...The use of artificial intelligence(AI)has increased since the middle of the 20th century,as evidenced by its applications to a wide range of engineering and science problems.Air traffic management(ATM)is becoming increasingly automated and autonomous,making it lucrative for AI applications.This paper presents a systematic review of studies that employ AI techniques for improving ATM capability.A brief account of the history,structure,and advantages of these methods is provided,followed by the description of their applications to several representative ATM tasks,such as air traffic services(ATS),airspace management(AM),air traffic flow management(ATFM),and flight operations(FO).The major contribution of the current review is the professional survey of the AI application to ATM alongside with the description of their specific advantages:(i)these methods provide alternative approaches to conventional physical modeling techniques,(ii)these methods do not require knowing relevant internal system parameters,(iii)these methods are computationally more efficient,and(iv)these methods offer compact solutions to multivariable problems.In addition,this review offers a fresh outlook on future research.One is providing a clear rationale for the model type and structure selection for a given ATM mission.Another is to understand what makes a specific architecture or algorithm effective for a given ATM mission.These are among the most important issues that will continue to attract the attention of the AI research community and ATM work teams in the future.展开更多
The fire distribution can be divided into weapon assignment and firing time scheduling. The criterion of weapon allocation is that a target with greater threat has higher priority. And the criterion of firing time sch...The fire distribution can be divided into weapon assignment and firing time scheduling. The criterion of weapon allocation is that a target with greater threat has higher priority. And the criterion of firing time scheduling is that a target can be damaged with the expected probability before a specific time. A fire distribution scheme and a program for the integrated missile-gun air defense system based on a criterion of earlier damage were presented. An example was taken to illustrate its effectiveness.展开更多
文摘WTA (weapon-target allocation) of air defense operation is a very complicated problem and current models focus on static and restricted WTA problem mostly. Based on the dynamic characteristics of air defense operational command and decision of warships' formation, a dynamic WTA model is established. Simulation results show that switch fire and repetition fire of anti-air weapon system affect the result of the air defense operation remarkably and the dynamic model is more satisfying than static ones. Related results are gained based on the analysis of the simulation results and the results are accordant with the intuitionistic tactical judgment. The model is some reference for the research of air defense C^3I system of warships' formation.
基金supported by the National Natural Science Foundation of China(61272011)
文摘In order to solve the problem that the ripple-effect analy- sis for the operational architecture of air defense systems (OAADS) is hardly described in quantity with previous modeling approaches, a supernetwork modeling approach for the OAADS is put for- ward by extending granular computing. Based on that operational units and links are equal to different information granularities, the supernetwork framework of the OAADS is constructed as a “four- network within two-layer” structure by forming dynamic operating coalitions, and measuring indexes of the ripple-effect analysis for the OAADS are given combining with Laplace spectral radius. In this framework, via analyzing multidimensional attributes which inherit relations between operational units in different granular scales, an extended granular computing is put forward integrating with a topological structure. Then the operation process within the supernetwork framework, including transformation relations be- tween two layers in the vertical view and mapping relations among functional networks in the horizontal view, is studied in quantity. As the application case shows, comparing with previous modeling approaches, the supernetwork model can validate and analyze the operation mechanism in the air defense architecture, and the ripple-effect analysis can be used to confirm the key operational unit with micro and macro viewpoints.
文摘The air traffic management system(ATM)has the task of ensuring safe,orderly and expeditious flow of air traffic.The ATM system architecture is very much dependent on the concept of operations(ConOps).Over the years the evolution in ConOps has resulted in changes in the ATM′s physical architecture,improving its physical infrastructure,increasing the levels of automation and making operational changes to improve air traffic flow,to cope with increasing demand for air travel.However,what is less clear is the impact of such changes in ConOps on the ATM′s functional architecture.This is vital for ensuring optimality in the implementation of the physical architecture components to support the ATM functions.This paper reviews the changes in the ConOps over the years,proposes a temporally invariant ATM functional model,and discusses some of the main key technologies expected to make significant improvements to the ATM system.
文摘The article analyses the problem of determining the operating parameters of the district heating substation cooperating with the air heating system in technological air conditioning systems equipped with heat exchangers with high efficiency of heat recovery.Attention was paid to the correct selection of heat exchangers for the heat output balance depending on the heat recovery protection algorithms against a drop in the temperature of the heat transfer surface below 0℃.Critical parameters were determined in Polish climatic conditions,at which the operation of the heat recovery exchanger in the air conditioning system is switched off or limited.It has been proven that the proper functioning of the district heating substation cooperating with the installation of air conditioning with high heat recovery efficiency requires the use of two heat exchangers with different characteristics,equipped with properly selected temperature control systems.The optimal model of cooperation between the technological air conditioning system and the heating substation was also indicated.
文摘The area of operations management has had a substantial effect on the today’s air transportation management.Having moved with huge demand from management to obtain a competitive advantage in the market,the airlines are utilizing advanced optimization techniques to develop decision support systems for operations management and control.In order to provide a service with high quality and low cost,airlines spend a tremendous amount of resources and effort to generate profitable and cost-effective fare classes,flight schedules,fleet plans,aircraft routes,crew scheduling,gate assignment,etc.In this paper,the techniques and operations management applications that are used in the air transportation industry are reviewed including demand forecasting,fleet assignment,aircraft routing,crew scheduling,runway scheduling problem and gate assignment.
文摘This paper investigates the feedback control of hidden Markov process(HMP) in the face of loss of some observation processes.The control action facilitates or impedes some particular transitions from an inferred current state in the attempt to maximize the probability that the HMP is driven to a desirable absorbing state.This control problem is motivated by the need for judicious resource allocation to win an air operation involving two opposing forces.The effectiveness of a receding horizon control scheme based on the inferred discrete state is examined.Tolerance to loss of sensors that help determine the state of the air operation is achieved through a decentralized scheme that estimates a continuous state from measurements of linear models with additive noise.The discrete state of the HMP is identified using three well-known detection schemes.The sub-optimal control policy based on the detected state is implemented on-line in a closed-loop,where the air operation is simulated as a stochastic process with SimEvents,and the measurement process is simulated for a range of single sensor loss rates.
基金Sponsored by the National Natural Science Foundation of China (60843005)the Basic Research Foundation of Beijing Institute of Technology(20070142018)
文摘A low-power complementary metal oxide semiconductor(CMOS) operational amplifier (op-amp) for real-time signal processing of micro air vehicle (MAV) is designed in this paper.Traditional folded cascode architecture with positive channel metal oxide semiconductor(PMOS) differential input transistors and sub-threshold technology are applied under the low supply voltage.Simulation results show that this amplifier has significantly low power,while maintaining almost the same gain,bandwidth and other key performances.The power required is only 0.12 mW,which is applicable to low-power and low-voltage real-time signal acquisition and processing system.
文摘In the modem development,the aircraft has become one of the main tools for people's daily travel and the development of the social industry,which promotes the development of the civil aviation.In the composition of airlines,dispatch is one of the representatives of the important work,and we should establish an effective management system.Under the function of this system,to do a good job in the air dispatch is not only conducive to guaranteeing the normal operation of flights,but is also conducive to further promoting the development of the civil aviation industry.In this regard,this paper focuses on the discussion and study of the management system of the air dispatch in the flight operation.
文摘Mycoflora of atmospheric air and dust samples collected from air conditioning systems in 12 of each I.C.U. (intensive care units) and O.R. (operation rooms) were tested using settle and dilution plate methods on four types of agar media and incubated at 25℃. Forty-five fungal species representing 23 genera were isolated and identified. The most prevalent genera recorded were Cladosporium, Aspergillus, Penicillium and Fusarium. The total colony forming units of airborne fungi recovered in I.C.U. and O.R. ranged between 31.13-49.61 colonies/m3 on the four types of media usedl The fungal total catch of the dust samples collected from the air conditioning system filters in I.C.U. and O.R. were ranged from 65.5-170 colonies/mg dust. Since, the interest to replace synthetic xenobiotics by natural compounds with low environmental persistence and biodegradable to control such airborne fungal contaminants is needed. In this respect, essential oils showed to possess a broad spectrum of antifungal activity. Fungal static ability of six oils was tested on 30 different fungal isolates. Vapors of common thyme oil exhibited the strongest inhibitory effects on the tested isolates, whereas the headspace vapors of blue gum and ginger had no inhibitory effects on the tested fungal isolates. These data revealed that the air conditioning systems may be an important source of contamination in I.C.U. and O.R. of Assiut university hospitals. Thus, patients may be in risk of being exposed to contaminated atmospheric air by opportunistic fungi and the use of essential oils as an alternative option to control hospital wards from fungal contaminants needs further studies.
基金the National Natural Science Foundation of China(Nos.71731001,61573181,71971114)the Fundamental Research Funds for the Central Universities(No.NS2020045)。
文摘Air traffic controllers face challenging initiatives due to uncertainty in air traffic.One way to support their initiatives is to identify similar operation scenes.Based on the operation characteristics of typical busy area control airspace,an complexity measurement indicator system is established.We find that operation in area sector is characterized by aggregation and continuity,and that dimensionality and information redundancy reduction are feasible for dynamic operation data base on principle components.Using principle components,discrete features and time series features are constructed.Based on Gaussian kernel function,Euclidean distance and dynamic time warping(DTW)are used to measure the similarity of the features.Then the matrices of similarity are input in Spectral Clustering.The clustering results show that similar scenes of trend are not ideal and similar scenes of modes are good base on the indicator system.Finally,actual vertical operation decisions for area sector and results of identification are compared,which are visualized by metric multidimensional scaling(MDS)plots.We find that identification results can well reflect the operation at peak hours,but controllers make different decisions under the similar conditions before dawn.The compliance rate of busy operation mode and division decisions at peak hours is 96.7%.The results also show subjectivity of actual operation and objectivity of identification.In most scenes,we observe that similar air traffic activities provide regularity for initiatives,validating the potential of this approach for initiatives and other artificial intelligence support.
基金Projects(51675043,52005038)supported by the National Natural Science Foundation of China。
文摘The free-piston engine generator(FPEG)is regarded as the next generation of energy conversion system which may replace traditional engines in the future.The effect of key operational parameters like excess air ratio of input mixture and ignition position on the engine performance of a dual-cylinder FPEG was investigated,and their sensitivity was analyzed in this paper.The operating compression ratio of the system is susceptible to changes in excess air ratio and ignition position.At the same time,it decreases from 15.8 to 6.6 when excess air ratio increases from 0.85 to 1.15,but it increases from 6.1 to 13.3 as ignition position increases from 15 mm to 20 mm.The operating frequency and indicated power are more sensitive to changes in excess air ratio than ignition position.But it is the opposite for the indicated thermal efficiency and friction loss.Excess air ratio and ignition position have a quite similar influence on heat transfer.Therefore,from the perspective of system operation and performance,it is preferable to keep excess air coefficient slightly below 1.0.In contrast,when selecting ignition position,it is of great importance to comprehensively consider the risk of structural damage caused by the increase in the compression ratio and in-cylinder gas pressure.
文摘A study on performances of different ventilation schemes provided by vertical and horizontal uni-directional air flow was carried out in a standard orthopaedic operating theatre (OT). Starting from our previous studies of a real OT under operating use conditions, in this research different air flow configurations, considering some air curtain solutions on the ceiling and at the sliding door always assumed to be open as a basic boundary condition, were investigated by numerical simulations. Indoor air quality (IAQ) indexes and thermal comfort parameters, deduced from simulation results were calculated and discussed referring to the best performance and efficacy between the air flow schemes to contrast the incorrect use conditions of the OT. Referring to the studied schemes, the reciprocal comparison emphasizes that a successful outcome in preventing surgical site infection can depend as much on resolving human factors (i.e. operational use conditions, door opening/closing), as on overcoming physical and technical obstacles.
文摘The influence of outside inertial shock combined with RF signal voltages on the properties of a shunt capacitive MEMS switch encapsulated in a low vacuum environment is analyzed considering the damping of the air around the MEMS switch membrane. An analytical expression that approximately computes the displacement induced by outside shock is obtained. According to the expression, the minimum required mechanical stiffness constant of an MEMS switch beam in some maximum tolerated insertion loss condition and some external inertial shock environment or the insertion loss induced by external inertial shock can also be obtained. The influence is also illustrated with an RF MEMS capacitive switch example,which shows that outside environment factors have to be taken into account when designing RF MEMS capacitive switches working in low vacuum. While encapsulating RF MEMS switches in low vacuum diminishes the air damping and improves the switch speed and operation voltage,the performances of a switch is incident to being influenced by outside environment. This study is very useful for the optimized design of RF MEMS capacitive switches working in low vacuum.
基金supported by Sustainable Smart Campus as a Living Lab of Hong Kong University of Science and Technology and the Strategic Topics Grant from Hong Kong Research Grants Council(STG2/E-605/23-N).
文摘Room air conditioners (RACs) are crucial household appliances that consume substantial amounts of electricity. Their efficiency tends to deteriorate over time, resulting in unnecessary energy wastage. Smart meters have become popular to monitor electricity use of home appliances, offering underexplored opportunities to evaluate RAC operational efficiency. Traditional supervised data-driven analysis methods necessitate a large sample size of RACs and their efficiency, which can be challenging to acquire. Additionally, the prevalence of zero values when RACs are off can skew training. To overcome these challenges, we assembled a dataset comprising a limited number of window-type RACs with measured operational efficiencies from 2021. We devised an intuitive zero filter and resampling protocol to process smart meter data and increase training samples. A deep learning-based encoder–decoder model was developed to evaluate RAC efficiency. Our findings suggest that our protocol and model accurately classify and regress RAC operational efficiency. We verified the usefulness of our approach by evaluating the RACs replaced in 2022 using 2022 smart meter data. Our case study demonstrates that repairing or replacing an inefficient RAC can save electricity by up to 17 %. Overall, our study offers a potential energy conservation solution by leveraging smart meters for regularly assessing RAC operational efficiency and facilitating smart preventive maintenance.
基金supported by the National Natural Science Foundation of China(Grant Nos. 50909089 and 40911140281)Qingdao S&T Development Program(09-1-3-41-jch)Korean Ministry of Land,Transport & Maritime Affairs through KORDI Program
文摘Oscillating Water Column (OWC) wave energy converting system is one of the most widely used facilities all over the world. The air chamber is utilized to convert the wave energy into the pneumatic energy. The numerical wave tank based on the two-phase VOF model is established in the present study toinvestigate the operating performance of OWC air chamber. The RANS equations, standard k-ε turbulence model and dynamic mesh technology are employed in the numerical model. The effects of incident wave conditions and shape parameters on the wave energy converting efficiency are studied and the capability of the present numerical wave tank on the corresponding engineering application is validated.
文摘Compressed air pumped hydro energy storage equipment combines compressed air energy storage technology and pumped storage technology. The water is pumped to a vessel to compress air for energy storage, and the compressed air expanses pushing water to drive the hydro turbine for power generation. The novel storage equipment saves natural gas resources, reduces carbon emission, and improves the controllability and reliability. The principle of compressed air pumped hydro energy storage is introduced and its mathematical model is built. The storage and generation process of the novel equipment is analyzed using the model. The calculation formula of the storage power is deduced in theory in different situations of isothermal and adiabatic compression. The optimal storage scheme is given when the capacity and withstand pressure of the vessel is definitive, and the max available capacity and the equipment utilization efficiency evaluation of the scheme is given.
文摘This paper presents a short contribution in air transportation, specifically in scheduling aircraft (plane) landings at Léopol Sédar Senghor (LSS) airport of Dakar. The safety of air navigation of LSS is managed by ASECNA: Agency for Air Navigation Safety in Africa and Madagascar. Scheduling aircraft landing is the problem of deciding a landing time on an appropriate runway for each aircraft in a given set of aircraft such that each aircraft lands within a predetermined time window. The separation criteria between the landing of an aircraft, and the landing of all successive aircraft, are respected. Our objective is to minimize the cost of deviation from the target times. We present a mixed-integer 0 - 1 formulation for the single runway case. Numerical experiments and comparisons based on real datasets of LSS airport are presented.
文摘As fate and transport of air emissions from animal housing systems is of increasing concern, dispersion models have become commonly used tools to estimate the downwind concentrations of pollutants at certain locations surrounding the animal production farms. In application of Gaussian dispersion model for downwind concentration predictions of animal housing emissions, unknown plume rise (△h) and plume shape of the horizontally emitted plumes from animal housing systems have been vital weak points challenging the accuracy of the model predictions. This paper reports an inverse AERMOD modeling study to derive the plum rises of PM10 emissions from mechanically ventilated egg production houses based upon field measurements of PM10 emission rate, downwind concentrations, and meteorological conditions. In total, 87 hourly plume rises were found for 20 days (five days per season for four seasons, from fall 2008 to summer 2009). The mean plume rises for fall 2008, winter 2008, spring 2009 and summer 2009 were 16.2 m (SE = 11.2 m), 7.9 m (SE = 9.5 m), 16.5 m (SE = 12.4 m), and 14.3 m (SE = 10.0 m), respectively. The relationships between plume rises and various factors were tested. While the diurnal patterns of the plume rises were not consistent among different selective days, they generally followed the diurnal patterns of house ventilation rates. Plume rise for weekends were significantly higher than those for weekdays in fall. Multiple linear regression showed a significant positive relationship (p = 0.0134) between wind speed and the plume rises. Ambient relative humidity and total volume flow were also found to be slightly (p = 0.171 and 0.217, respectively) related to the plume rises.
基金supported by the National Natural Science Foundation of China(62073330)the Natural Science Foundation of Hunan Province(2020JJ4339)the Scientific Research Fund of Hunan Province Education Department(20B272).
文摘The use of artificial intelligence(AI)has increased since the middle of the 20th century,as evidenced by its applications to a wide range of engineering and science problems.Air traffic management(ATM)is becoming increasingly automated and autonomous,making it lucrative for AI applications.This paper presents a systematic review of studies that employ AI techniques for improving ATM capability.A brief account of the history,structure,and advantages of these methods is provided,followed by the description of their applications to several representative ATM tasks,such as air traffic services(ATS),airspace management(AM),air traffic flow management(ATFM),and flight operations(FO).The major contribution of the current review is the professional survey of the AI application to ATM alongside with the description of their specific advantages:(i)these methods provide alternative approaches to conventional physical modeling techniques,(ii)these methods do not require knowing relevant internal system parameters,(iii)these methods are computationally more efficient,and(iv)these methods offer compact solutions to multivariable problems.In addition,this review offers a fresh outlook on future research.One is providing a clear rationale for the model type and structure selection for a given ATM mission.Another is to understand what makes a specific architecture or algorithm effective for a given ATM mission.These are among the most important issues that will continue to attract the attention of the AI research community and ATM work teams in the future.
基金Sponsored by Jiangsu Planned Project for Postdoctoral (0901014B)
文摘The fire distribution can be divided into weapon assignment and firing time scheduling. The criterion of weapon allocation is that a target with greater threat has higher priority. And the criterion of firing time scheduling is that a target can be damaged with the expected probability before a specific time. A fire distribution scheme and a program for the integrated missile-gun air defense system based on a criterion of earlier damage were presented. An example was taken to illustrate its effectiveness.