An all-optical Fano-like diode featuring a nonlinear lateral elliptical micro-cavity and a reflecting column in the photonic crystal waveguide is proposed.The asymmetric micro-cavity is constructed by removing one rod...An all-optical Fano-like diode featuring a nonlinear lateral elliptical micro-cavity and a reflecting column in the photonic crystal waveguide is proposed.The asymmetric micro-cavity is constructed by removing one rod and changing the shape of the lateral rod from a circle to an ellipse.A reflecting pillar is also introduced into the waveguide to construct an F-P cavity with the elliptical defect and enhance the asymmetric transmission for the incident light wave transmitting rightwards and leftwards,respectively.By designing the size of the ellipse and optimizing a reflecting rod at a suitable position,a maximum forward light transmittance of-1.14 dB and a minimum backward transmittance of-57.66 dB are achieved at the working wavelength of 1550.47 nm.The corresponding response time is about 10 ps when the intensity of the pump light beam resonant at 637 nm is 3.97 W/μm2.展开更多
We propose a novel all-optical sampling method using nonlinear polarization rotation in a semiconductor optical amplifier. A rate-equation model capable of describing the all-optical sampling mechanism is presented in...We propose a novel all-optical sampling method using nonlinear polarization rotation in a semiconductor optical amplifier. A rate-equation model capable of describing the all-optical sampling mechanism is presented in this paper. Based on this model, we investigate the optimized operating parameters of the proposed system by simulating the output intensity of the probe light as functions of the input polarization angle, the phase induced by the polarization controller, and the ori- entation of the polarization beam splitter. The simulated results show that we can obtain a good linear slope and a large linear dynamic range,which is suitable for all-optical sampling. The operating power of the pump light can be less than lmW. The presented all-optical sampling method can potentially operate at a sampling rate up to hundreds GS/s and needs low optical power.展开更多
Holography, which was invented by Dennis Gabor in 1948, offers an approach to reconstructing both the amplitude and phase information of a three-dimensional (3D) object [1]. Since its invention, the concept of hologra...Holography, which was invented by Dennis Gabor in 1948, offers an approach to reconstructing both the amplitude and phase information of a three-dimensional (3D) object [1]. Since its invention, the concept of holography has been widely used in various fields, such as microscopy [2], interferometry [3], ultrasonography [4], and holographic display [5]. Optical holography can be divided into two steps: recording and reconstruction. A conventional hologram is recorded onto a photosensitive film as the interference between an object beam carrying the 3D object information and a reference beam. Thereafter, the original object wavefront is reconstructed in the 3D image space by illuminating the reference beam on the recorded hologram.展开更多
The rapid development of information technology has fueled an ever-increasing demand for ultrafast and ultralow-en-ergy-consumption computing.Existing computing instruments are pre-dominantly electronic processors,whi...The rapid development of information technology has fueled an ever-increasing demand for ultrafast and ultralow-en-ergy-consumption computing.Existing computing instruments are pre-dominantly electronic processors,which use elec-trons as information carriers and possess von Neumann architecture featured by physical separation of storage and pro-cessing.The scaling of computing speed is limited not only by data transfer between memory and processing units,but also by RC delay associated with integrated circuits.Moreover,excessive heating due to Ohmic losses is becoming a severe bottleneck for both speed and power consumption scaling.Using photons as information carriers is a promising alternative.Owing to the weak third-order optical nonlinearity of conventional materials,building integrated photonic com-puting chips under traditional von Neumann architecture has been a challenge.Here,we report a new all-optical comput-ing framework to realize ultrafast and ultralow-energy-consumption all-optical computing based on convolutional neural networks.The device is constructed from cascaded silicon Y-shaped waveguides with side-coupled silicon waveguide segments which we termed“weight modulators”to enable complete phase and amplitude control in each waveguide branch.The generic device concept can be used for equation solving,multifunctional logic operations as well as many other mathematical operations.Multiple computing functions including transcendental equation solvers,multifarious logic gate operators,and half-adders were experimentally demonstrated to validate the all-optical computing performances.The time-of-flight of light through the network structure corresponds to an ultrafast computing time of the order of several picoseconds with an ultralow energy consumption of dozens of femtojoules per bit.Our approach can be further expan-ded to fulfill other complex computing tasks based on non-von Neumann architectures and thus paves a new way for on-chip all-optical computing.展开更多
This paper demonstrates an all-optical switching model system comprising a single pulsed pump beam at 355 nm and a CW He-Ne signal beam at 632.8 nm with 2-(2'-hydroxyphenyl)benzothiazole (HBT) in ethanol solution...This paper demonstrates an all-optical switching model system comprising a single pulsed pump beam at 355 nm and a CW He-Ne signal beam at 632.8 nm with 2-(2'-hydroxyphenyl)benzothiazole (HBT) in ethanol solution. The origins of the optical switching effect were discussed. By the study of nonlinear optical properties for HBT in ethanol solvent, this paper verified that the excited-state intramolecular proton transfer (ESIPT) effect of HBT and the thermal effect of solvent worked on quite different time scales and together induced the change of the refractive index of HBT solution, leading to the signal beam deflection. The results indicated that the HBT molecule could be an excellent candidate for high-speed and high-sensitive optical switching devices.展开更多
All-optically integrated photoacoustic(PA)and optical coherence tomography(OCT)dualmode imaging technology that could o®er comprehensive pathological information for accurate diagnosis in clinic has gradually bec...All-optically integrated photoacoustic(PA)and optical coherence tomography(OCT)dualmode imaging technology that could o®er comprehensive pathological information for accurate diagnosis in clinic has gradually become a promising imaging technology in the aspect of biomedical imaging during the recent years.This review refers to the technology aspects of alloptical PA detection and system evolution of optically integrated PA and OCT,including Michelson interferometer dual-mode imaging system,Fabry–Perot(FP)interferometer dualmode imaging system and Mach–Zehnder interferometer dual-mode imaging system.It is believed that the optically integrated PA and OCT has great potential applications in biomedical imaging.展开更多
The Kerr nonlinearity in two-dimensional(2D)nanomaterials is emerging as an appealing and intriguing research area due to their prominent light processing,modulation,and manipulation abilities.In this contribution,2D ...The Kerr nonlinearity in two-dimensional(2D)nanomaterials is emerging as an appealing and intriguing research area due to their prominent light processing,modulation,and manipulation abilities.In this contribution,2D black arsenic-phosphorus(B-AsP)nanosheets(NSs)were applied in nonlinear photonic devices based on spatial self-phase modula-tion(SSPM)method.By applying the Kerr nonlinearity in 2D B-AsP,an all-optical phase-modulated system is proposed to realize the functions of“on”and“off”in all-optical switching.By using the same all-optical phase-modulated system,another optical logic gate is proposed,and the logical“or”function is obtained based on the 2D B-AsP NSs dispersions.Moreover,by using the SSPM method,a 2D B-AsP/SnS_(2) hybrid structure is fabricated,and the result illustrates that the hybrid structure possesses the ability of the unidirectional nonlinear excitation,which helps in obtaining the function of spatial asymmetric light propagation.This function is considered an important prerequisite for the realization of diode functionalization,which is believed to be a factor in important basis for the design of isolators as well.The initial investig-ations indicate that 2D B-AsP is applicable for designing optical logical devices,which can be considered as an import-ant development in all-optical information processing.展开更多
Supercontinuum generation(SCG) and its application on all-optical quantization of all-optical analog-to-digital conversions(AOADCs) at the mid-infrared region in an Al GaAs strip waveguide are investigated numerically...Supercontinuum generation(SCG) and its application on all-optical quantization of all-optical analog-to-digital conversions(AOADCs) at the mid-infrared region in an Al GaAs strip waveguide are investigated numerically. The simulation results show that when the parabolic pulse is input, not only broader and higher-coherence SCG is obtained and a higher effective number of bits(ENOB) can be achieved, compared with the input pulse with hyperbolic-secant and Gaussian shaping. A four-bit quantization resolution is achieved along with a signal-to-noise ratio of 24.02 dB and an ENOB of3.99 bit, and the required input peak power is 760 mW.展开更多
All-optical devices without external electronic components have drawn extraordinary attentions in all-optical communication.In this work,boron quantum dots(BQDs)were synthesized by a facile liquid-phase exfoliation me...All-optical devices without external electronic components have drawn extraordinary attentions in all-optical communication.In this work,boron quantum dots(BQDs)were synthesized by a facile liquid-phase exfoliation method.The as-prepared BQDs showed good structural homogeneity and crystallinity,broadband optical absorption as well as excellent photothermal properties.Femtosecond-resolved transient absorption further revealed the short carrier relaxation time of BQDs.Inspired by the outstanding photothermal properties and ultrafast carrier dynamic of BQDs,we fabricated BQDsbased all-optical modulator.The phase shift with a slope efficiency of 0.032π/m W and response time of 0.97 ms can be achieved.The modulator was used in laser resonance cavity to achieve all-optical actively Q-switched laser operation with control repetition rate.This prototypical BQDs-based all-optical modulator shows a great potential to be applied in all-optical information processing and communication.展开更多
Using the dynamical properties of the polarization bistability that depends on the detuning of the injected light,we propose a novel approach to implement reliable all-optical stochastic logic gates in the cascaded ve...Using the dynamical properties of the polarization bistability that depends on the detuning of the injected light,we propose a novel approach to implement reliable all-optical stochastic logic gates in the cascaded vertical cavity surface emitting lasers(VCSELs) with optical-injection.Here,two logic inputs are encoded in the detuning of the injected light from a tunable CW laser.The logic outputs are decoded from the two orthogonal polarization lights emitted from the optically injected VCSELs.For the same logic inputs,under electro-optic modulation,we perform various digital signal processing(NOT,AND,NAND,XOR,XNOR,OR,NOR) in the all-optical domain by controlling the logic operation of the applied electric field.Also we explore their delay storages by using the mechanism of the generalized chaotic synchronization.To quantify the reliabilities of these logic gates,we further demonstrate their success probabilities.展开更多
In this paper, we propose an optical quantization scheme for all-optical analog-to-digital conversion that facilitates photonics integration. A segment of 10-m photonic crystal fiber with a high nonlinear coefficient ...In this paper, we propose an optical quantization scheme for all-optical analog-to-digital conversion that facilitates photonics integration. A segment of 10-m photonic crystal fiber with a high nonlinear coefficient of 62.8 W-1/kin is utilized to realize large scale soliton self-frequency shift relevant to the power of the sampled optical signal. Furthermore, a 100-m dispersion-increasing fiber is used as the spectral compression module for further resolution enhancement. Simulation results show that 317-nm maximum wavelength shift is realized with 1550-nm initial wavelength and 6-bit quantization resolution is obtained with a subsequent spectral compression process.展开更多
Micromotion induced by the radio-frequency field contributes greatly to the systematic frequency shifts of optical frequency standards.Although different strategies for mitigating this effect have been proposed,trappi...Micromotion induced by the radio-frequency field contributes greatly to the systematic frequency shifts of optical frequency standards.Although different strategies for mitigating this effect have been proposed,trapping ions optically has the potential to provide a generic solution to the elimination of micromotion.This could be achieved by trapping a single ion in the dipole trap composed of a highpower laser field.Here,we present the setup of the dipole trap composed of a 532 nm laser at a power of 10 W aiming to optically trap a single^(40)Ca^(+)and we observe an AC-Stark shift of the fluorescence spectrum line of~22 MHz caused by the 532 nm dipole beam.The beam waist of the dipole laser is several microns,which would provide a dipole potential strong enough for all-optical trapping of a single^(40)Ca^(+)ion.展开更多
In this paper, we optimize a proposed all-optical quantization scheme based on soliton self-frequency shift(SSFS)and pre-chirp spectral compression techniques. A 10m-long high-nonlinear photonic crystal fiber(PCF) is ...In this paper, we optimize a proposed all-optical quantization scheme based on soliton self-frequency shift(SSFS)and pre-chirp spectral compression techniques. A 10m-long high-nonlinear photonic crystal fiber(PCF) is used as an SSFS medium relevant to the power of the sampled optical pulses. Furthermore, a 10m-long dispersion flattened hybrid cladding hexagonal-octagonal PCF(6/8-PCF) is utilized as a spectral compression medium to further enhance the resolution. Simulation results show that 6-bit quantization resolution is still obtained when a 100m-long dispersion-increasing fiber(DIF)is replaced by a 6/8-PCF in spectral compression module.展开更多
All-optical network,as a new backbone network,is featured with high speed and large capacity transmission.It may be out of order due to various faults while providing high-performance transmission service,thus more ef...All-optical network,as a new backbone network,is featured with high speed and large capacity transmission.It may be out of order due to various faults while providing high-performance transmission service,thus more effective fault repairing methods are required.A routing and wavelength assignment method based on SDN is designed and analyzed from the perspective of service function chaining in this paper.A multi-objective integer linear programming model based on impairment-aware and scheduling time is constructed by combining the unified control of control plane with the resource allocation mode of service function virtualization.Meanwhile,an improved Firefly Algorithm is adopted to solve the model for obtaining a better scheduling scheme,so as to the resources are allocated on-demand in a more flexible and efficient way,which effectively improved the self-recovery capability of the network.In the simulation experiments,Through the comparison between the method proposed and methods based on centralization and distribution,method proposed in the paper is superior to the compared ones in the indexes of survivability,blocking probability,link recovery time,and presents a better scheduling performance,makes the system has stronger ability of self-healing in the face of failure.展开更多
The polymethyl methacrylate (PMMA) film doped with an azo dye ethyl-red (ER) film is employed to demonstrate the properties of an all-optical switch by its photoinduced dichroism and birefringence. We show how to ...The polymethyl methacrylate (PMMA) film doped with an azo dye ethyl-red (ER) film is employed to demonstrate the properties of an all-optical switch by its photoinduced dichroism and birefringence. We show how to enhance remarkably the modulation depth of all-optical switches almost to 100% by using two linear polarization beams: one beam is inclined at 45° with respect to the probing beam and serves as a pumping beam, and the other beam is perpendicular to the probing beam and used as an erasing beam. Furthermore, a maximum-to-minimum output intensity ratio of 2000:1 is achieved in experiment, which is very useful and important for optical storages and image displays.展开更多
Based on power modulation of a pump laser and precessional projection detection, we present an all-optical vector magnetometer of cesium, which has a demonstrated magnitude sensitivity of 80fF/Hz^1/2 and an orientatio...Based on power modulation of a pump laser and precessional projection detection, we present an all-optical vector magnetometer of cesium, which has a demonstrated magnitude sensitivity of 80fF/Hz^1/2 and an orientation sensitivity of 0.1°/Hz^1/2. In the device, four main factors are measured experimentally, which are the Larmor precession frequency of a polarized magnetic moment that depends on the modulus of the measured m^gnetic field only, two phase shifts and amplitude ratio of the precession projection in the two probe directions relative to the magnetic field orientation. This kind of magnetometer with high sensitivity in the range of the spatial angle is suitable for solving the inverse problem and geomagnetic navigation.展开更多
Broad-band all-optical wavelength conversion of differential phase-shift keyed (DPSK) signal is experimentally demonstrated. This scheme is composed of a one-bit delay interferometer demodulation stage followed by a...Broad-band all-optical wavelength conversion of differential phase-shift keyed (DPSK) signal is experimentally demonstrated. This scheme is composed of a one-bit delay interferometer demodulation stage followed by a semiconductor optical amplifier (SOA) based nonlinear polarization switch. A wavelength converter for the 10 G b/s DPSK signal is presented, which has a wide wavelength range of more than 30 nm. The converted signals experience small power penalties less than 1.4 dB compared with the original signal, at a bit error rate of 10-9. Additionally, the optical spectra, the measured waveforms and the open eye diagrams of the converted signals show a high quality wavelength conversion performance.展开更多
3-hydroxyflavone (3-HF) is an organic molecule with an excited-stated intramolecular proton transfer (ESIPT) effect. All-optical switchings and beam deflections of 3-HF in three kinds of solvents (cyclohexane, et...3-hydroxyflavone (3-HF) is an organic molecule with an excited-stated intramolecular proton transfer (ESIPT) effect. All-optical switchings and beam deflections of 3-HF in three kinds of solvents (cyclohexane, ethanol and dimethyl sulfoxide) have been investigated by using the third-harmonic generation (355 nm) of a mode-locked Nd:YAG laser as a pump beam and a continuous-wave (cw) He-Ne laser (632.8 nm) as a probe beam. The nonlinear refractive indices of 3-HF in the three different solvents are determined by using the Z-scan technique under an ultraviolet (UV) pump beam at a wavelength of 355 nm. It has been found that the optical switching and beam deflection effects result from the change in refractive index of 3-HF under the irradiation of the pump beam. On the basis of the analyses of absorption spectra and fluorescence spectra, we conclude that the change in refractive index of 3-HF is due to not the thermal effect but the ESIPT effect of 3-HF under the pump beam. As the ESIPT is exceedingly fast, 3-HF might be an excellent candidate for high-speed optical switching.展开更多
All-optical XNOR and AND logic gates using four-wave mixing (FWM) and cross-gain modulation (XGM) in a single semiconductor optical amplifier (SOA) with improved dynamics are simultaneously realized. By numerica...All-optical XNOR and AND logic gates using four-wave mixing (FWM) and cross-gain modulation (XGM) in a single semiconductor optical amplifier (SOA) with improved dynamics are simultaneously realized. By numerical simulation, the effects of the input optical wave powers and injection current on the critical factors of the logic gate performances, such as the ON-OFF contrast ratio, the power-output level of the logic '1', and the difference between power outputs of the logic '1', are investigated in detail. In addition, the effect of the counter-propagating CW pump on the gain recovery is analysed.展开更多
An all-optical analog-to-digital converter (ADC) based on the nonlinear effect in a silicon waveguide is a promising candidate for overcoming the limitation of electronic devices and is suitable for photonic integra...An all-optical analog-to-digital converter (ADC) based on the nonlinear effect in a silicon waveguide is a promising candidate for overcoming the limitation of electronic devices and is suitable for photonic integration. In this paper, a lumped time-delay compensation scheme with 2-bit quantization resolution is proposed. A strip silicon waveguide is designed and used to compensate for the entire time-delays of the optical pulses after a soliton self-frequency shift (SSFS) module within a wavelength range of 1550 nm-1580 nm. A dispersion coefficient as high as -19800 ps/(km.nm) with +0.5 ps/(km.nm) variation is predicted for the strip waveguide. The simulation results show that the maximum supportable sampling rate (MSSR) is 50.45 GSa/s with full width at half maximum (FWHM) variation less than 2.52 ps, along with the 2-bit effective- number-of-bit and Gray code output.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12274478 and 61775244)the National Key Research and Development Program of China(Grant Nos.2021YFB2800604 and 2021YFB2800302).
文摘An all-optical Fano-like diode featuring a nonlinear lateral elliptical micro-cavity and a reflecting column in the photonic crystal waveguide is proposed.The asymmetric micro-cavity is constructed by removing one rod and changing the shape of the lateral rod from a circle to an ellipse.A reflecting pillar is also introduced into the waveguide to construct an F-P cavity with the elliptical defect and enhance the asymmetric transmission for the incident light wave transmitting rightwards and leftwards,respectively.By designing the size of the ellipse and optimizing a reflecting rod at a suitable position,a maximum forward light transmittance of-1.14 dB and a minimum backward transmittance of-57.66 dB are achieved at the working wavelength of 1550.47 nm.The corresponding response time is about 10 ps when the intensity of the pump light beam resonant at 637 nm is 3.97 W/μm2.
文摘We propose a novel all-optical sampling method using nonlinear polarization rotation in a semiconductor optical amplifier. A rate-equation model capable of describing the all-optical sampling mechanism is presented in this paper. Based on this model, we investigate the optimized operating parameters of the proposed system by simulating the output intensity of the probe light as functions of the input polarization angle, the phase induced by the polarization controller, and the ori- entation of the polarization beam splitter. The simulated results show that we can obtain a good linear slope and a large linear dynamic range,which is suitable for all-optical sampling. The operating power of the pump light can be less than lmW. The presented all-optical sampling method can potentially operate at a sampling rate up to hundreds GS/s and needs low optical power.
基金support from the Australian Research Council (ARC) through the Discovery Project (DP180102402)support from a scholarship from theChina Scholarship Council (201706190189)financial support from the Humboldt Research Fellowship from the Alexander von Humboldt Foundation
文摘Holography, which was invented by Dennis Gabor in 1948, offers an approach to reconstructing both the amplitude and phase information of a three-dimensional (3D) object [1]. Since its invention, the concept of holography has been widely used in various fields, such as microscopy [2], interferometry [3], ultrasonography [4], and holographic display [5]. Optical holography can be divided into two steps: recording and reconstruction. A conventional hologram is recorded onto a photosensitive film as the interference between an object beam carrying the 3D object information and a reference beam. Thereafter, the original object wavefront is reconstructed in the 3D image space by illuminating the reference beam on the recorded hologram.
基金financial supports from the National Key Research and Development Program of China(2018YFB2200403)National Natural Sci-ence Foundation of China(NSFC)(61775003,11734001,91950204,11527901,11604378,91850117).
文摘The rapid development of information technology has fueled an ever-increasing demand for ultrafast and ultralow-en-ergy-consumption computing.Existing computing instruments are pre-dominantly electronic processors,which use elec-trons as information carriers and possess von Neumann architecture featured by physical separation of storage and pro-cessing.The scaling of computing speed is limited not only by data transfer between memory and processing units,but also by RC delay associated with integrated circuits.Moreover,excessive heating due to Ohmic losses is becoming a severe bottleneck for both speed and power consumption scaling.Using photons as information carriers is a promising alternative.Owing to the weak third-order optical nonlinearity of conventional materials,building integrated photonic com-puting chips under traditional von Neumann architecture has been a challenge.Here,we report a new all-optical comput-ing framework to realize ultrafast and ultralow-energy-consumption all-optical computing based on convolutional neural networks.The device is constructed from cascaded silicon Y-shaped waveguides with side-coupled silicon waveguide segments which we termed“weight modulators”to enable complete phase and amplitude control in each waveguide branch.The generic device concept can be used for equation solving,multifunctional logic operations as well as many other mathematical operations.Multiple computing functions including transcendental equation solvers,multifarious logic gate operators,and half-adders were experimentally demonstrated to validate the all-optical computing performances.The time-of-flight of light through the network structure corresponds to an ultrafast computing time of the order of several picoseconds with an ultralow energy consumption of dozens of femtojoules per bit.Our approach can be further expan-ded to fulfill other complex computing tasks based on non-von Neumann architectures and thus paves a new way for on-chip all-optical computing.
基金Project supported by the National Natural Science Foundation of China (Grant No 60178025) and the Key Laboratory of 0ptoelectronics Information Technical Science of Ministry of Education, Institute of Modern 0ptics, Nankai University, China.
文摘This paper demonstrates an all-optical switching model system comprising a single pulsed pump beam at 355 nm and a CW He-Ne signal beam at 632.8 nm with 2-(2'-hydroxyphenyl)benzothiazole (HBT) in ethanol solution. The origins of the optical switching effect were discussed. By the study of nonlinear optical properties for HBT in ethanol solvent, this paper verified that the excited-state intramolecular proton transfer (ESIPT) effect of HBT and the thermal effect of solvent worked on quite different time scales and together induced the change of the refractive index of HBT solution, leading to the signal beam deflection. The results indicated that the HBT molecule could be an excellent candidate for high-speed and high-sensitive optical switching devices.
基金the National Natural Science Foundation of China(61627827,61331001,81630046and 91539127)the Science and Technology Planning Project of Guangdong Province,China(2015B020233016,2014B020215003and 2014A020215031)+1 种基金the Distinguished Young Teacher Project in Higher Education of Guangdong,China(YQ2015049)the Science and Technology Youth Talent for Special Project of Guangdong,China(2015TQ01X882).
文摘All-optically integrated photoacoustic(PA)and optical coherence tomography(OCT)dualmode imaging technology that could o®er comprehensive pathological information for accurate diagnosis in clinic has gradually become a promising imaging technology in the aspect of biomedical imaging during the recent years.This review refers to the technology aspects of alloptical PA detection and system evolution of optically integrated PA and OCT,including Michelson interferometer dual-mode imaging system,Fabry–Perot(FP)interferometer dualmode imaging system and Mach–Zehnder interferometer dual-mode imaging system.It is believed that the optically integrated PA and OCT has great potential applications in biomedical imaging.
基金supports from the National Natural Science Foundation of China(NSFC)(61435010 and 21773168)the Science and Technique Planning Project of Guangdong Province(Grant No.2016B050501005)+1 种基金the Science and Technology Innovation Commission of Shenzhen(JCYJ20170302153323978 and JCYJ201704101719588539)the Science and Technology Development Fund(No.007/2017/A1 and132/2017/A3),Ma-cao SAR,China.
文摘The Kerr nonlinearity in two-dimensional(2D)nanomaterials is emerging as an appealing and intriguing research area due to their prominent light processing,modulation,and manipulation abilities.In this contribution,2D black arsenic-phosphorus(B-AsP)nanosheets(NSs)were applied in nonlinear photonic devices based on spatial self-phase modula-tion(SSPM)method.By applying the Kerr nonlinearity in 2D B-AsP,an all-optical phase-modulated system is proposed to realize the functions of“on”and“off”in all-optical switching.By using the same all-optical phase-modulated system,another optical logic gate is proposed,and the logical“or”function is obtained based on the 2D B-AsP NSs dispersions.Moreover,by using the SSPM method,a 2D B-AsP/SnS_(2) hybrid structure is fabricated,and the result illustrates that the hybrid structure possesses the ability of the unidirectional nonlinear excitation,which helps in obtaining the function of spatial asymmetric light propagation.This function is considered an important prerequisite for the realization of diode functionalization,which is believed to be a factor in important basis for the design of isolators as well.The initial investig-ations indicate that 2D B-AsP is applicable for designing optical logical devices,which can be considered as an import-ant development in all-optical information processing.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61307109 and 61475023)
文摘Supercontinuum generation(SCG) and its application on all-optical quantization of all-optical analog-to-digital conversions(AOADCs) at the mid-infrared region in an Al GaAs strip waveguide are investigated numerically. The simulation results show that when the parabolic pulse is input, not only broader and higher-coherence SCG is obtained and a higher effective number of bits(ENOB) can be achieved, compared with the input pulse with hyperbolic-secant and Gaussian shaping. A four-bit quantization resolution is achieved along with a signal-to-noise ratio of 24.02 dB and an ENOB of3.99 bit, and the required input peak power is 760 mW.
基金financial supports from the State Key Research Development Program of China(Grant No.2019YFB2203503)National Natural Science Fund(Grant No.61875138)the support from the Instrumental Analysis Center of Shenzhen University(Xili Campus)。
文摘All-optical devices without external electronic components have drawn extraordinary attentions in all-optical communication.In this work,boron quantum dots(BQDs)were synthesized by a facile liquid-phase exfoliation method.The as-prepared BQDs showed good structural homogeneity and crystallinity,broadband optical absorption as well as excellent photothermal properties.Femtosecond-resolved transient absorption further revealed the short carrier relaxation time of BQDs.Inspired by the outstanding photothermal properties and ultrafast carrier dynamic of BQDs,we fabricated BQDsbased all-optical modulator.The phase shift with a slope efficiency of 0.032π/m W and response time of 0.97 ms can be achieved.The modulator was used in laser resonance cavity to achieve all-optical actively Q-switched laser operation with control repetition rate.This prototypical BQDs-based all-optical modulator shows a great potential to be applied in all-optical information processing and communication.
基金Project supported by the National Natural Science Foundation of China(Grant No.61475120)the Innovative Projects in Guangdong Colleges and Universities,China(Grant Nos.2014KTSCX134 and 2015KTSCX146)
文摘Using the dynamical properties of the polarization bistability that depends on the detuning of the injected light,we propose a novel approach to implement reliable all-optical stochastic logic gates in the cascaded vertical cavity surface emitting lasers(VCSELs) with optical-injection.Here,two logic inputs are encoded in the detuning of the injected light from a tunable CW laser.The logic outputs are decoded from the two orthogonal polarization lights emitted from the optically injected VCSELs.For the same logic inputs,under electro-optic modulation,we perform various digital signal processing(NOT,AND,NAND,XOR,XNOR,OR,NOR) in the all-optical domain by controlling the logic operation of the applied electric field.Also we explore their delay storages by using the mechanism of the generalized chaotic synchronization.To quantify the reliabilities of these logic gates,we further demonstrate their success probabilities.
基金Project supported by the National Basic Research Program of China(Grant Nos.2010CB327605 and 2010CB328304)the National High-Technology Research and Development Program of China(Grant No.2013AA031501)+7 种基金the National Natural Science Foundation of China(Grant No.61307109)the Research Foundation from Ministry of Education of China(Grant No.109015)the Program for New Century Excellent Talents in University of Ministry of Education of China(Grant No.NECT-11-0596)the Beijing Nova Program,China(Grant No.2011066)the Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No.20120005120021)the Fundamental Research Funds for the Central Universities of Ministry of Education of China(Grant No.2013RC1202)the China Postdoctoral Science Foundation(Grant No.2012M511826)the Postdoctoral Science Foundation of Guangdong Province,China(Grant No.244331)
文摘In this paper, we propose an optical quantization scheme for all-optical analog-to-digital conversion that facilitates photonics integration. A segment of 10-m photonic crystal fiber with a high nonlinear coefficient of 62.8 W-1/kin is utilized to realize large scale soliton self-frequency shift relevant to the power of the sampled optical signal. Furthermore, a 100-m dispersion-increasing fiber is used as the spectral compression module for further resolution enhancement. Simulation results show that 317-nm maximum wavelength shift is realized with 1550-nm initial wavelength and 6-bit quantization resolution is obtained with a subsequent spectral compression process.
基金the National Key Research and Development Program of China(Grant Nos.2018YFA0307500 and 2017YFA0304401)the National Natural Science Foundation of China(Grant Nos.11634013 and 11774388)+3 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB21030100)the CAS Youth Innovation Promotion Association(Grant Nos.2018364 and Y201963)the Science Fund for Distinguished Young Scholars of Hubei Province,China(Grant No.2017CFA040)the K.C.Wong Education Foundation(Grant No.GJTD-2019-15).
文摘Micromotion induced by the radio-frequency field contributes greatly to the systematic frequency shifts of optical frequency standards.Although different strategies for mitigating this effect have been proposed,trapping ions optically has the potential to provide a generic solution to the elimination of micromotion.This could be achieved by trapping a single ion in the dipole trap composed of a highpower laser field.Here,we present the setup of the dipole trap composed of a 532 nm laser at a power of 10 W aiming to optically trap a single^(40)Ca^(+)and we observe an AC-Stark shift of the fluorescence spectrum line of~22 MHz caused by the 532 nm dipole beam.The beam waist of the dipole laser is several microns,which would provide a dipole potential strong enough for all-optical trapping of a single^(40)Ca^(+)ion.
文摘In this paper, we optimize a proposed all-optical quantization scheme based on soliton self-frequency shift(SSFS)and pre-chirp spectral compression techniques. A 10m-long high-nonlinear photonic crystal fiber(PCF) is used as an SSFS medium relevant to the power of the sampled optical pulses. Furthermore, a 10m-long dispersion flattened hybrid cladding hexagonal-octagonal PCF(6/8-PCF) is utilized as a spectral compression medium to further enhance the resolution. Simulation results show that 6-bit quantization resolution is still obtained when a 100m-long dispersion-increasing fiber(DIF)is replaced by a 6/8-PCF in spectral compression module.
基金supported by the National Science and Technology Major Project(No.2016ZX03001023-005)National Natural Science Foundation of China(No.61403109)+2 种基金China Postdoctoral Science Foundation(No.2019M651263)Scientific Research Fund of Heilongjiang Provincial Education Department(No.12541169)Natural Science Foundation of Heilongjiang Province(No.F2017015)。
文摘All-optical network,as a new backbone network,is featured with high speed and large capacity transmission.It may be out of order due to various faults while providing high-performance transmission service,thus more effective fault repairing methods are required.A routing and wavelength assignment method based on SDN is designed and analyzed from the perspective of service function chaining in this paper.A multi-objective integer linear programming model based on impairment-aware and scheduling time is constructed by combining the unified control of control plane with the resource allocation mode of service function virtualization.Meanwhile,an improved Firefly Algorithm is adopted to solve the model for obtaining a better scheduling scheme,so as to the resources are allocated on-demand in a more flexible and efficient way,which effectively improved the self-recovery capability of the network.In the simulation experiments,Through the comparison between the method proposed and methods based on centralization and distribution,method proposed in the paper is superior to the compared ones in the indexes of survivability,blocking probability,link recovery time,and presents a better scheduling performance,makes the system has stronger ability of self-healing in the face of failure.
基金Project supported by the National Natural Science Foundation of China(Grant No.10774152)the Science and Technology Foundation of Guangzhou City,China(Grant No.2008J1-C021) the Research Fund for the Doctoral Program of Higher Education of China(Grant No.20070055103)
文摘The polymethyl methacrylate (PMMA) film doped with an azo dye ethyl-red (ER) film is employed to demonstrate the properties of an all-optical switch by its photoinduced dichroism and birefringence. We show how to enhance remarkably the modulation depth of all-optical switches almost to 100% by using two linear polarization beams: one beam is inclined at 45° with respect to the probing beam and serves as a pumping beam, and the other beam is perpendicular to the probing beam and used as an erasing beam. Furthermore, a maximum-to-minimum output intensity ratio of 2000:1 is achieved in experiment, which is very useful and important for optical storages and image displays.
基金Supported by the National Natural Science Foundation of China under Grant Nos U1631239 and U1331114the 111 Project to Harbin Engineering University under Grant No B13015
文摘Based on power modulation of a pump laser and precessional projection detection, we present an all-optical vector magnetometer of cesium, which has a demonstrated magnitude sensitivity of 80fF/Hz^1/2 and an orientation sensitivity of 0.1°/Hz^1/2. In the device, four main factors are measured experimentally, which are the Larmor precession frequency of a polarized magnetic moment that depends on the modulus of the measured m^gnetic field only, two phase shifts and amplitude ratio of the precession projection in the two probe directions relative to the magnetic field orientation. This kind of magnetometer with high sensitivity in the range of the spatial angle is suitable for solving the inverse problem and geomagnetic navigation.
文摘Broad-band all-optical wavelength conversion of differential phase-shift keyed (DPSK) signal is experimentally demonstrated. This scheme is composed of a one-bit delay interferometer demodulation stage followed by a semiconductor optical amplifier (SOA) based nonlinear polarization switch. A wavelength converter for the 10 G b/s DPSK signal is presented, which has a wide wavelength range of more than 30 nm. The converted signals experience small power penalties less than 1.4 dB compared with the original signal, at a bit error rate of 10-9. Additionally, the optical spectra, the measured waveforms and the open eye diagrams of the converted signals show a high quality wavelength conversion performance.
基金Project supported by the National Natural Science Foundation of China (Grant No 60178025)
文摘3-hydroxyflavone (3-HF) is an organic molecule with an excited-stated intramolecular proton transfer (ESIPT) effect. All-optical switchings and beam deflections of 3-HF in three kinds of solvents (cyclohexane, ethanol and dimethyl sulfoxide) have been investigated by using the third-harmonic generation (355 nm) of a mode-locked Nd:YAG laser as a pump beam and a continuous-wave (cw) He-Ne laser (632.8 nm) as a probe beam. The nonlinear refractive indices of 3-HF in the three different solvents are determined by using the Z-scan technique under an ultraviolet (UV) pump beam at a wavelength of 355 nm. It has been found that the optical switching and beam deflection effects result from the change in refractive index of 3-HF under the irradiation of the pump beam. On the basis of the analyses of absorption spectra and fluorescence spectra, we conclude that the change in refractive index of 3-HF is due to not the thermal effect but the ESIPT effect of 3-HF under the pump beam. As the ESIPT is exceedingly fast, 3-HF might be an excellent candidate for high-speed optical switching.
基金Project supported by the National Natural Science Foundation of China (Grant No 60407001) and the National Science Foundation for Post-doctoral Scientists of China (Grant No 20060390246).
文摘All-optical XNOR and AND logic gates using four-wave mixing (FWM) and cross-gain modulation (XGM) in a single semiconductor optical amplifier (SOA) with improved dynamics are simultaneously realized. By numerical simulation, the effects of the input optical wave powers and injection current on the critical factors of the logic gate performances, such as the ON-OFF contrast ratio, the power-output level of the logic '1', and the difference between power outputs of the logic '1', are investigated in detail. In addition, the effect of the counter-propagating CW pump on the gain recovery is analysed.
基金supported by the Fundamental Research Funds for the Central Universities,China(Grant No.FRF-TP-15-030A1)China Postdoctoral Science Foundation(Grant No.2015M580978)
文摘An all-optical analog-to-digital converter (ADC) based on the nonlinear effect in a silicon waveguide is a promising candidate for overcoming the limitation of electronic devices and is suitable for photonic integration. In this paper, a lumped time-delay compensation scheme with 2-bit quantization resolution is proposed. A strip silicon waveguide is designed and used to compensate for the entire time-delays of the optical pulses after a soliton self-frequency shift (SSFS) module within a wavelength range of 1550 nm-1580 nm. A dispersion coefficient as high as -19800 ps/(km.nm) with +0.5 ps/(km.nm) variation is predicted for the strip waveguide. The simulation results show that the maximum supportable sampling rate (MSSR) is 50.45 GSa/s with full width at half maximum (FWHM) variation less than 2.52 ps, along with the 2-bit effective- number-of-bit and Gray code output.