A scheme for the generation of a pseudo noise(PN)sequence in the optical domain is proposed.The cascaded units of micro-ring resonator(MRR)-based D flip-flop are used to design the device.D flip-flops consist of a sin...A scheme for the generation of a pseudo noise(PN)sequence in the optical domain is proposed.The cascaded units of micro-ring resonator(MRR)-based D flip-flop are used to design the device.D flip-flops consist of a single MRR and share the same optical pump signal.Numerical analysis is performed,and simulated results are discussed.The proposed device can be used as a building block for optical computing and for creating an information processing system.展开更多
In this paper,we briefly review the recent experimental progresses in quantum optics based on four-wave mixing(FWM) processes in hot rubidium vapor,particularly our two recent experiments in quantum information.We hav...In this paper,we briefly review the recent experimental progresses in quantum optics based on four-wave mixing(FWM) processes in hot rubidium vapor,particularly our two recent experiments in quantum information.We have experimentally produced strong quantum correlations between three bright beams generated by two cascaded FWM processes.The intensity difference squeezing with the cascaded system is enhanced to(-7.0±0.1)d B from the(-5.5±0.1)d B/(4.5±0.1)d B with only one FWM process.Also,this system can be easily extended to multiple modes using multiple FWM processes.Besides,we have also successfully realized a cascade all-optical transistor(AOT),which is driven by a very weak light beam about 800 photons in total.The required probe power for achieving a switching efficiency of 50% can be as low as 180 p W,and it can manipulate a light beam with power of 5.0×106 times more,which proves the cascade of the AOT.Both experiments may find wide applications in quantum information and optical communication.展开更多
文摘A scheme for the generation of a pseudo noise(PN)sequence in the optical domain is proposed.The cascaded units of micro-ring resonator(MRR)-based D flip-flop are used to design the device.D flip-flops consist of a single MRR and share the same optical pump signal.Numerical analysis is performed,and simulated results are discussed.The proposed device can be used as a building block for optical computing and for creating an information processing system.
基金supported by the National Natural Science Foundation of China(Grants Nos.91436211,11374104,10974057 and 11234003)the Specialized Research Fund for the Doctoral Program(Grant No.20130076110011)+4 种基金the Program for Professor of Special Appointment(Eastern Scholar)at Shanghai Institutions of Higher Learningthe Program for New Century Excellent Talents in University(Grant No.NCET-10-0383)the Shu Guang project supported by Shanghai Municipal Education Commission and Shanghai Education Development Foundation(Grant No.11SG26)the Shanghai Pujiang Program(Grant No.09PJ1404400)the Scientific Research Foundation for the Returned Overseas Chinese Scholars,State Education Ministry and the National Basic Research Program of China(Grant No.2011CB921604)
文摘In this paper,we briefly review the recent experimental progresses in quantum optics based on four-wave mixing(FWM) processes in hot rubidium vapor,particularly our two recent experiments in quantum information.We have experimentally produced strong quantum correlations between three bright beams generated by two cascaded FWM processes.The intensity difference squeezing with the cascaded system is enhanced to(-7.0±0.1)d B from the(-5.5±0.1)d B/(4.5±0.1)d B with only one FWM process.Also,this system can be easily extended to multiple modes using multiple FWM processes.Besides,we have also successfully realized a cascade all-optical transistor(AOT),which is driven by a very weak light beam about 800 photons in total.The required probe power for achieving a switching efficiency of 50% can be as low as 180 p W,and it can manipulate a light beam with power of 5.0×106 times more,which proves the cascade of the AOT.Both experiments may find wide applications in quantum information and optical communication.