期刊文献+
共找到49,180篇文章
< 1 2 250 >
每页显示 20 50 100
A dynamic database of solid-state electrolyte(DDSE)picturing all-solid-state batteries
1
作者 Fangling Yang Egon Campos dos Santos +5 位作者 Xue Jia Ryuhei Sato Kazuaki Kisu Yusuke Hashimoto Shin-ichi Orimo Hao Li 《Nano Materials Science》 EI CAS CSCD 2024年第2期256-262,共7页
All-solid-state batteries(ASSBs)are a class of safer and higher-energy-density materials compared to conventional devices,from which solid-state electrolytes(SSEs)are their essential components.To date,investigations ... All-solid-state batteries(ASSBs)are a class of safer and higher-energy-density materials compared to conventional devices,from which solid-state electrolytes(SSEs)are their essential components.To date,investigations to search for high ion-conducting solid-state electrolytes have attracted broad concern.However,obtaining SSEs with high ionic conductivity is challenging due to the complex structural information and the less-explored structure-performance relationship.To provide a solution to these challenges,developing a database containing typical SSEs from available experimental reports would be a new avenue to understand the structureperformance relationships and find out new design guidelines for reasonable SSEs.Herein,a dynamic experimental database containing>600 materials was developed in a wide range of temperatures(132.40–1261.60 K),including mono-and divalent cations(e.g.,Li^(+),Na^(+),K^(+),Ag^(+),Ca^(2+),Mg^(2+),and Zn^(2+))and various types of anions(e.g.,halide,hydride,sulfide,and oxide).Data-mining was conducted to explore the relationships among different variates(e.g.,transport ion,composition,activation energy,and conductivity).Overall,we expect that this database can provide essential guidelines for the design and development of high-performance SSEs in ASSB applications.This database is dynamically updated,which can be accessed via our open-source online system. 展开更多
关键词 Solid-state electrolyte(SSE) all-solid-state battery(ASSB) Ionic conductivity Dynamic database Machine learning
下载PDF
Progress and perspective of interface design in garnet electrolyte-based all-solid-state batteries 被引量:2
2
作者 Junrun Feng Zhonghui Gao +2 位作者 Lin Sheng Zhangxiang Hao Feng R.Wang 《Carbon Energy》 CAS 2021年第3期385-409,共25页
Inorganic solid-state electrolytes(SSEs)are nonflammable alternatives to the commercial liquid-phase electrolytes.This enables the use of lithium(Li)metal as an anode,providing high-energy density and improved stabili... Inorganic solid-state electrolytes(SSEs)are nonflammable alternatives to the commercial liquid-phase electrolytes.This enables the use of lithium(Li)metal as an anode,providing high-energy density and improved stability by avoiding unwanted liquid-phase chemical reactions.Among the different types of SSEs,the garnet-type electrolytes witness a rapid development and are considered as one of the top candidates to pair with Li metal due to their high ionic conductivity,thermal,and electrochemical stability.However,the large resistances at the interface between garnet-type electrolytes and cathode/anode are the major bottlenecks for delivering desirable electrochemical performances of all-solid-state batteries(SSBs).The electrolyte/anode interface also suffers from metallic dendrite formation,leading to rapid performance degradation.This is a fundamental material challenge due to the poor contact and wettability between garnet-type electrolytes with electrode materials.Here,we summarize and analyze the recent contributions in mitigating such materials challenges at the interface.Strategies used to address these challenges are divided into different categories with regard to their working principles.On one hand,progress has been made in the anode/garnet interface,such as the successful application of Li-alloy anode and different artificial interlayers,significantly improving interfacial performance.On the other hand,the desired cathode/garnet interface is still hard to reach due to the complex chemical and physical structure at the cathode.The common methods used are nanostructured cathode host and sintering additives for increasing the contact area.On the basis of this information,we present our views on the remaining challenges and future research of electrode/garnet interface.This review not only motivates the need for further understanding of the fundamentals,stability,and modifications of the garnet/electrode interfaces but also provides guidelines for the future design of the interface for SSB. 展开更多
关键词 all-solid-state batteries garnet electrolytes garnet/electrode interface solid-solid interface
下载PDF
Space Charge Layer Eff ect in Sulfide Solid Electrolytes in All-Solid-State Batteries: In-situ Characterization and Resolution
3
作者 Wei He Lei Zhou +4 位作者 Muhammad Khurram Tufail Pengfei Zhai Peiwen Yu Renjie Chen Wen Yang 《Transactions of Tianjin University》 EI CAS 2021年第6期423-433,共11页
All-solid-state lithium batteries(ASSLBs)have advantages of safety and high energy density,and they are expected to become the next generation of energy storage devices.Sulfide-based solid-state electrolytes(SSEs)with... All-solid-state lithium batteries(ASSLBs)have advantages of safety and high energy density,and they are expected to become the next generation of energy storage devices.Sulfide-based solid-state electrolytes(SSEs)with high ionic conduc-tivity and low grain boundary resistance exhibit remarkable practical application.However,the space charge layer(SCL)eff ect and high interfacial resistance caused by a mismatch with the current commercial oxide cathodes restrict the develop-ment of sulfide SSEs and ASSLBs.This review summarizes the research progress on the SCL eff ect of sulfide SSEs and oxide cathodes,including the mechanism and direct evidence from high performance in-situ characterizations,as well as recent progress on the interfacial modification strategies to alleviate the SCL eff ect.This study provides future direction to stabilize the high performance sulfide-based solid electrolyte/oxide cathode interface for state-of-the-art ASSLBs and future all-SSE storage devices. 展开更多
关键词 Sulfide-based solid electrolyte INTERFACES Space charge layer all-solid-state batteries
下载PDF
Review of the electrochemical performance and interfacial issues of high-nickel layered cathodes in inorganic all-solid-state batteries 被引量:2
4
作者 Jing Wang Shangqian Zhao +5 位作者 Ling Tang Fujuan Han Yi Zhang Yimian Xia Lijun Wang Shigang Lu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2022年第5期1003-1018,共16页
All-solid-state batteries potentially exhibit high specific energy and high safety,which is one of the development directions for nextgeneration lithium-ion batteries.The compatibility of all-solid composite electrode... All-solid-state batteries potentially exhibit high specific energy and high safety,which is one of the development directions for nextgeneration lithium-ion batteries.The compatibility of all-solid composite electrodes with high-nickel layered cathodes and inorganic solid electrolytes is one of the important problems to be solved.In addition,the interface and mechanical problems of high-nickel layered cathodes and inorganic solid electrolyte composite electrodes have not been thoroughly addressed.In this paper,the possible interface and mechanical problems in the preparation of high-nickel layered cathodes and inorganic solid electrolytes and their interface reaction during charge–discharge and cycling are reviewed.The mechanical contact problems from phenomena to internal causes are also analyzed.Uniform contact between the high-nickel cathode and solid electrolyte in space and the ionic conductivity of the solid electrolyte are the prerequisites for the good performance of a high-nickel layered cathode.The interface reaction and contact loss between the high-nickel layered cathode and solid electrolyte in the composite electrode directly affect the passage of ions and electrons into the active material.The buffer layer constructed on the high-nickel cathode surface can prevent direct contact between the active material and electrolyte and slow down their interface reaction.An appropriate protective layer can also slow down the interface contact loss by reducing the volume change of the high-nickel layered cathode during charge and discharge.Finally,the following recommendations are put forward to realize the development vision of high-nickel layered cathodes:(1)develop electrochemical systems for high-nickel layered cathodes and inorganic solid electrolytes;(2)elucidate the basic science of interface and electrode processes between high-nickel layered cathodes and inorganic solid electrolytes,clarify the mechanisms of the interfacial chemical and electrochemical reactions between the two materials,and address the intrinsic safety issues;(3)strengthen the development of research and engineering technologies and their preparation methods for composite electrodes with high-nickel layered cathodes and solid electrolytes and promote the industrialization of all-solid-state batteries. 展开更多
关键词 all-solid-state lithium-ion battery high-nickel layered cathode inorganic solid-state electrolyte cathodes and electrolyte interface
下载PDF
“Polymer-in-ceramic” based poly(ε-caprolactone)/ceramic composite electrolyte for all-solid-state batteries 被引量:4
5
作者 Bohao Zhang Yulong Liu +7 位作者 Jia Liu Liqun Sun Lina Cong Fang Fu Alain Mauger Christian M.Julien Haiming Xie Xiumei Pan 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第1期318-325,I0010,共9页
Inspired by the concept of "polymer-in-ceramic",a composite poly(ε-caprolactone)(PCL)/ceramic containing LiTFSI is prepared and investigated as a solid electrolyte for all-solid-state batteries.The composit... Inspired by the concept of "polymer-in-ceramic",a composite poly(ε-caprolactone)(PCL)/ceramic containing LiTFSI is prepared and investigated as a solid electrolyte for all-solid-state batteries.The composite with the optimum concentration of 45 wt% LiTFSI and 75 wt% Li1.5Al0.5Ge1.5(PO4)3(LAGP,NASICON-type structure) exhibits a high ionic conductivity(σi=0.17 mS cm-1) at 30℃,a transference number of 0.30,and is stable up to 5.0 V.The composite electrolyte is a flexible and self-standing membrane.Solid-state LiFePO4//Li batteries with this composite electrolyte demonstrate excellent cycling stability with high discharge capacity of 157 mA h g-1,high capacity retention of 96% and coulombic efficiency of 98.5% after 130 cycles at 30℃ and 0.1 C rate.These electrochemical properties are better than other PCL-based allsolid-lithium batteries,and validate the concept of "polymer-in-ceramic" by avoiding the drawback of lower conductivity in prior "polymer-in-ceramic" electrolyte at high concentration of the ceramic. 展开更多
关键词 all-solid-state electrolyte Polymer-in-ceramic Poly(ε-caprolactone)/LAGP composite High fluorinated SEI layer
下载PDF
Inhomogeneous lithium-storage reaction triggering the inefficiency of all-solid-state batteries
6
作者 Jaeyoung Kim Wontae Lee +7 位作者 Jangwhan Seok Eunkang Lee Woosung Choi Hyunyoung Park Soyeong Yun Minji Kim Jun Lim Won-Sub Yoon 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第3期226-236,I0008,共12页
All-solid-state batteries offer an attractive option for developing safe lithium-ion batteries.Among the various solid-state electrolyte candidates for their applications,sulfide solid electrolytes are the most suitab... All-solid-state batteries offer an attractive option for developing safe lithium-ion batteries.Among the various solid-state electrolyte candidates for their applications,sulfide solid electrolytes are the most suitable owing to their high ionic conductivity and facile processability.However,their performance is extensively lower compared with those of conventional liquid electrolyte-based batteries mainly because of interfacial reactions between the solid electrolytes and high capacity cathodes.Moreover,the kinetic evolution reaction in the composite cathode of all-solid-state lithium batteries has not been actively discussed.Here,electrochemical analyses were performed to investigate the differences between the organic liquid electrolyte-based battery and all-solid-state battery systems.Combined with electrochemical analyses and synchrotron-based in situ and ex situ X-ray analyses,it was confirmed that inhomogeneous reactions were due to physical contact.Loosely contacted and/or isolated active material particles account for the inhomogeneously charged regions,which further intensify the inhomogeneous reactions during extended cycles,thereby increasing the polarization of the system.This study highlighted the benefits of electrochemo-mechanical integrity for securing a smooth conduction pathway and the development of a reliable homogeneous reaction system for the success of solid-state batteries. 展开更多
关键词 Liquid electrolyte lithium batteries all-solid-state lithium batteries Ni-rich cathode Synchrotron-based X-ray techniques Inhomogeneous reaction
下载PDF
Surface-roughened current collectors for anode-free all-solid-state batteries 被引量:1
7
作者 Donghee Gu Hyoungchul Kim +1 位作者 Jong-Ho Lee Sangbaek Park 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第7期248-257,I0007,共11页
Anode-free all-solid-state batteries(AFASSBs), composed of a fully lithiated cathode and a bare current collector(CC) that eliminates excess lithium, can maximize the energy density(because of a compact cell configura... Anode-free all-solid-state batteries(AFASSBs), composed of a fully lithiated cathode and a bare current collector(CC) that eliminates excess lithium, can maximize the energy density(because of a compact cell configuration) and improve the safety of solid-state systems. Although significant progress has been made by modifying CCs in liquid-based anode-free batteries, the role of CCs and the mechanism of Li formation on CCs in AFASSBs are still unexplored. Here, we systematically investigate the effect of the surface roughness of the CCs on the Li plating/stripping behavior in AFASSBs. The results show that the moderately roughened CC substantially improves the Coulombic efficiency and cycle stability of AFASSBs owing to the increased contact points between the solid electrolyte and the roughened CC. In contrast, the excessively roughened CC deteriorates the performance owing to the contact loss.Moreover, an ex situ interface analysis reveals that the roughened surface of the CC could suppress the interfacial degradation during the Li ion extraction from a sulfide solid electrolyte to a CC. This provides an indication to the origin that hinders the electrochemical performance of AFASSBs. These findings show the potential for the application of surface-engineered CCs in AFASSBs and provide guidelines for designing advanced CCs. 展开更多
关键词 Anode-free Solid-state batteries Current collectors Surface roughness Li formation
下载PDF
Monophase-homointerface electrodes intrinsically stabilize high-voltage all-solid-state batteries
8
作者 Xiaolin Xiong Xianguo Ma +2 位作者 Tianshi Lv Liquan Chen Liumin Suo 《Science China Chemistry》 SCIE EI CAS CSCD 2024年第5期1729-1739,共11页
The electrochemical stability and contact reliability of heterointerfaces between the solid electrolyte(SE) and electrode are critical for all-solid-state batteries(ASSBs), particularly much more challenging for high-... The electrochemical stability and contact reliability of heterointerfaces between the solid electrolyte(SE) and electrode are critical for all-solid-state batteries(ASSBs), particularly much more challenging for high-voltage ASSBs, owing to the limited thermodynamically electrochemical window and mechanical inflexibility of SE, aggravating interfacial side reactions and contact failure. Considering all those issues originating from intrinsic heterogeneity in physicochemical features between the cathode material and SE, we are thinking about simplifying the heterointerfaces into a homointerface as a permanent cure to solve all electrochemical-mechanical interfacial failure. Herein, we propose monophase cathodes to construct thermodynamically stable all-in-one homointerfaces in ASS electrodes, removing unstable heterointerfaces by excluding SEs and intrinsically eliminating the Li chemical potential gap to avoid the formation of lithium-depleted space-charge layer and highly resistive mixed ion–electron conductor interphase. Our conception is successfully validated in the layered transition-metal oxide cathodes, which display outstanding stability no matter the MH-LiCoO_(2) cathode charging to 4.7 V or MH-Li_(1.2)Mn_(0.54)Ni_(0.13)-Co_(0.13)O_(2) cathode charging to 5.3 V. It is undeniable that our current version of above-illustrated MH-cathodes would bring out some new challenges for the practical application due to abandoning the SE. However, we believe our work also offers a brandnew direction to ultimately address the electrochemical–mechanical interfacial issues that would be promising for high-energy ASSBs with more discoveries of advanced monophase cathodes in the future. 展开更多
关键词 monophase-homointerface electrode high-voltage all-solid-state batteries electrochemical-mechanical interfacial issue
原文传递
Perspective on powder technology for all-solid-state batteries:How to pair sulfide electrolyte with high-voltage cathode 被引量:3
9
作者 Jiangkui Hu Shijie Yang +6 位作者 Yingying Pei Xilong Wang Yulong Liao Shuai Li Aolong Yue Jia-Qi Huang Hong Yuan 《Particuology》 SCIE EI CAS CSCD 2024年第3期55-66,共12页
Sulfide solid electrolytes(SEs)have attracted ever-increasing attention due to their superior roomtemperature ionic conductivity(~10^(-2) S cm^(-1)).Additionally,the integration of sulfide SEs and highvoltage cathodes... Sulfide solid electrolytes(SEs)have attracted ever-increasing attention due to their superior roomtemperature ionic conductivity(~10^(-2) S cm^(-1)).Additionally,the integration of sulfide SEs and highvoltage cathodes is promising to achieve higher energy density.However,the incompatible interfaces between sulfide SEs and high-voltage cathodes have been one of the key factors limiting their applications.Therefore,this review presents a critical summarization of the interfacial issues in all-solid-state lithium batteries based on sulfide SEs and high-voltage cathodes and proposes strategies to stabilize the electrolyte/cathode interfaces.Moreover,the future research direction of electrolyte/cathode interfaces and application prospects of powder technology in sulfide-based ASSLBs were also discussed. 展开更多
关键词 Sulfide solid electrolytes High-voltage cathodes Electrode/electrolyte interfaces all-solid-state lithium batteries
原文传递
Advances in All-Solid-State Lithium-Sulfur Batteries for Commercialization
10
作者 Birhanu Bayissa Gicha Lemma Teshome Tufa +2 位作者 Njemuwa Nwaji Xiaojun Hu Jaebeom Lee 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第9期209-246,共38页
Solid-state batteries are commonly acknowledged as the forthcoming evolution in energy storage technologies.Recent development progress for these rechargeable batteries has notably accelerated their trajectory toward ... Solid-state batteries are commonly acknowledged as the forthcoming evolution in energy storage technologies.Recent development progress for these rechargeable batteries has notably accelerated their trajectory toward achieving commercial feasibility.In particular,all-solid-state lithium-sulfur batteries(ASSLSBs)that rely on lithium-sulfur reversible redox processes exhibit immense potential as an energy storage system,surpassing conventional lithium-ion batteries.This can be attributed predominantly to their exceptional energy density,extended operational lifespan,and heightened safety attributes.Despite these advantages,the adoption of ASSLSBs in the commercial sector has been sluggish.To expedite research and development in this particular area,this article provides a thorough review of the current state of ASSLSBs.We delve into an in-depth analysis of the rationale behind transitioning to ASSLSBs,explore the fundamental scientific principles involved,and provide a comprehensive evaluation of the main challenges faced by ASSLSBs.We suggest that future research in this field should prioritize plummeting the presence of inactive substances,adopting electrodes with optimum performance,minimizing interfacial resistance,and designing a scalable fabrication approach to facilitate the commercialization of ASSLSBs. 展开更多
关键词 all-solid-state lithium-sulfur batteries COMMERCIALIZATION Enhancement strategies Solid-state electrolytes Sulfurbased cathodes
下载PDF
Solid-state synthesis and ion transport characteristics of the β-KSbF_(4) for all-solid-state fluoride-ion batteries
11
作者 Jiali Liu Huahui Zhao +8 位作者 Jingcheng Xia Lingguang Yi Xiaoyi Chen Dongdu Li Shuhan Ni Xinyi Su Yixuan Chen Min Liu Xianyou Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第7期758-767,共10页
All-solid-state fluoride ion batteries(FIBs)have been recently considered as a post-lithium-ion battery system due to their high safety and high energy density.Just like all solid-state lithium batteries,the key to th... All-solid-state fluoride ion batteries(FIBs)have been recently considered as a post-lithium-ion battery system due to their high safety and high energy density.Just like all solid-state lithium batteries,the key to the development of FIBs lies in room-temperature electrolytes with high ionic conductivity.β-KSbF_(4) is a kind of promising solid-state electrolyte for FIBs owing to its rational ionic conductivity and relatively wide electrochemical stability window at room temperature.However,the previous synthesis routes ofβ-KSbF_(4) required the use of highly toxic hydrofluoric acid and the ionic conductivity of as-prepared product needs to be further improved.Herein,the β-KSbF_(4) sample with an ionic conductivity of 1.04×10^(-4)s cm^(-1)(30°C)is synthesized through the simple solid-state route.In order to account for the high ionic conductivity of the as-synthesizedβ-KSbF_(4),X-ray diffraction(XRD),scanning electron microscopy(SEM),and energy dispersive X-ray spectroscopy(EDS)are used to characterize the physic-ochemical properties.The results show that the as-synthesizedβ-KSbF_(4) exhibits higher carrier concentra-tion of 1.0×10^(-6)S cm-Hz^(-1)K and hopping frequency of 1.31×10^(6)Hz at 30°C due to the formation of the fluorine vacancies.Meanwhile,the hopping frequency shows the same trend as the changes of ionic conductivity with the changes of temperature,while the carrier concentration is found to be almost con-stant.The two different trends indicate the hopping frequency is mainly responsible for the ionic conduc-tion behavior withinβ-KSbF_(4).Furthermore,the all-solid-state FIBs,in which Ag and Pb+PbF_(2) are adopted as cathode and anode,andβ-KSbF_(4) as fluoride ion conductor,are capable of reversible charge and discharge.The assembled FIBs show a discharge capacity of 108.4 mA h g^(-1) at 1st cycle and 74.2 mA h g^(-1) at 50th cycle.Based on an examination of the capacity decay mechanism,it has been found that deterioration of the electrolyte/electrode interface is an important reason for hindering the commer-cial application of FIBs.Hence,the in-depth comprehension of the ion transport characteristics inβ-KSbF_(4) and the interpretation of the capacity fading mechanism will be conducive to promoting development of high-performanceFIBs. 展开更多
关键词 Solid-state electrolyte Carrier concentration Hopping frequency β-KSbF_(4) all-solid-state fluoride ion batteries
下载PDF
Boosting the cycling stability of all-solid-state lithium metal batteries through MOF-based polymeric protective layers
12
作者 Hongfei Bao Diancheng Chen +9 位作者 Jiaqi Cao Pengfeng Jiang Kaili Li Runtao Liu Yuling Zhao Yichun Zheng Beiqi Liao Yaming Zhang Xia Lu Yang Sun 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第8期511-518,I0011,共9页
Solid-state electrolytes(SSEs)play a pivotal role in advancing next-generation lithium metal battery technology.However,they commonly encounter substantial interfacial resistance and poor stability when interfacing wi... Solid-state electrolytes(SSEs)play a pivotal role in advancing next-generation lithium metal battery technology.However,they commonly encounter substantial interfacial resistance and poor stability when interfacing with lithium metal,hindering practical applications.Herein,we introduce a flexible metal-organic framework(MOF:NUS-6)-incorporated polymeric layer,denoted as NP,designed to protect the sodium superionic conductor(NASICON)-type Li_(1.3)Al_(0.3)Ti_(1.7)(PO_(4))_(3)(LATP)electrolyte from Li metal anodes.The NP matrix establishes a soft interface with the LATP surface,effectively reducing voids and gaps that may arise between the LATP electrolyte and Li metal.Moreover,the MOF component in NP enhances ionic conductivity,offers abundant Li^(+)transport sites,and provides hierarchical ion channels,ensuring a homogeneous Li^(+)flow and thus effectively inhibiting Li dendrite formation.Utilizing NP,we fabricate Li symmetrical cells cycled for over 1600 h at 0.2 mA cm^(-2)and all-solid-state LiINP-LATPI LiFePO_(4)batteries,achieving a remarkable 99.3%capacity retention after 200 cycles at 0.2 C.This work outlines a general strategy for designing long-lasting and stable solid-state Li metal batteries. 展开更多
关键词 all-solid-state Li metal battery MOF-based polymeric layer Li dendrite Interfacial contact LATP electrolyte stability
下载PDF
In-situ interfacial passivation and self-adaptability synergistically stabilizing all-solid-state lithium metal batteries
13
作者 Huanhui Chen Xing Cao +6 位作者 Moujie Huang Xiangzhong Ren Yubin Zhao Liang Yu Ya Liu Liubiao Zhong Yejun Qiu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期282-292,I0007,共12页
The function of solid electrolytes and the composition of solid electrolyte interphase(SEI)are highly significant for inhibiting the growth of Li dendrites.Herein,we report an in-situ interfacial passivation combined ... The function of solid electrolytes and the composition of solid electrolyte interphase(SEI)are highly significant for inhibiting the growth of Li dendrites.Herein,we report an in-situ interfacial passivation combined with self-adaptability strategy to reinforce Li_(0.33)La_(0.557)TiO_(3)(LLTO)-based solid-state batteries.Specifically,a functional SEI enriched with LiF/Li_(3)PO_(4) is formed by in-situ electrochemical conversion,which is greatly beneficial to improving interface compatibility and enhancing ion transport.While the polarized dielectric BaTiO_(3)-polyamic acid(BTO-PAA,BP)film greatly improves the Li-ion transport kinetics and homogenizes the Li deposition.As expected,the resulting electrolyte offers considerable ionic conductivity at room temperature(4.3 x 10~(-4)S cm^(-1))and appreciable electrochemical decomposition voltage(5.23 V)after electrochemical passivation.For Li-LiFePO_(4) batteries,it shows a high specific capacity of 153 mA h g^(-1)at 0.2C after 100 cycles and a long-term durability of 115 mA h g^(-1)at 1.0 C after 800 cycles.Additionally,a stable Li plating/stripping can be achieved for more than 900 h at 0.5 mA cm^(-2).The stabilization mechanisms are elucidated by ex-situ XRD,ex-situ XPS,and ex-situ FTIR techniques,and the corresponding results reveal that the interfacial passivation combined with polarization effect is an effective strategy for improving the electrochemical performance.The present study provides a deeper insight into the dynamic adjustment of electrode-electrolyte interfacial for solid-state lithium batteries. 展开更多
关键词 Solid-state lithium batteries Composite solid electrolyte In-situ polymerization Interfacial passivation layer Self-adaptability
下载PDF
A gel polymer electrolyte based on IL@NH_(2)-MIL-53(Al)for high-performance all-solid-state lithium metal batteries
14
作者 Sijia Wang Ye Liu +5 位作者 Liang He Yu Sun Qing Huang Shoudong Xu Xiangyun Qiu Tao Wei 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第5期47-55,共9页
Solid polymer composite electrolytes possess the benefits of superior compatibility with electrodes and good thermal characteristics for more secure energy storage equipment.Herein,a new gel polymer electrolyte(GPE)co... Solid polymer composite electrolytes possess the benefits of superior compatibility with electrodes and good thermal characteristics for more secure energy storage equipment.Herein,a new gel polymer electrolyte(GPE)containing NH_(2)-MIL-53(Al),[PP_(13)][TFSI],LiTFSI,and PVDF-HFP was prepared using a simple method of solution casting.The effects of encapsulating different ratios of ionic liquid([PP_(13)][TFSI])into the micropores of functionalized metal-organic frameworks(NH_(2)-MIL-53(Al))on the electrochemical properties were compared.XRD,SEM,nitrogen adsorption-desorption isotherms,and electrochemical measurements were conducted.This GPE demonstrates a superior ionic conductivity of 8.08×10^(-4)S·cm^(-1)at 60℃and can sustain a discharge specific capacity of 156.6 mA·h·g^(-1)at 0.2 C for over 100 cycles.This work might offer a potential approach to alleviate the solid-solid contact with the solid-state electrolyte and electrodes and broaden a new window for the creation of all-solid-state batteries. 展开更多
关键词 Metal-organic frameworks(MOFs) All solid-state lithium batteries(ASSLBs) Ionic liquid NH_(2)-MIL-53(Al) Solid-state electrolytes(SSEs)
下载PDF
In situ formed LiF-Li_(3)N interface layer enables ultra-stable sulfide electrolyte-based all-solid-state lithium batteries 被引量:1
15
作者 Ming Wu Mengqi Li +5 位作者 Yuming Jin Xinshuang Chang Xiaolei Zhao Zhi Gu Gaozhan Liu Xiayin Yao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第4期272-278,共7页
Sulfide solid electrolytes are promising for high energy density and safety in all-solid-state batteries due to their high ionic conductivity and good mechanical properties.However,the application of sulfide solid ele... Sulfide solid electrolytes are promising for high energy density and safety in all-solid-state batteries due to their high ionic conductivity and good mechanical properties.However,the application of sulfide solid electrolytes in all-solid-state batteries with lithium anode is restricted by the side reactions at lithium/electrolytes interfaces and the growth of lithium dendrite caused by nonuniform lithium deposition.Herein,a homogeneous LiF-Li_(3)N composite protective layer is in situ formed via a manipulated reaction of pentafluorobenzamide with Li metal.The LiF-Li_(3)N layer with both high interfacial energy and interfacial adhesion energy can synergistically suppress side reactions and inhibit the growth of lithium dendrite,achieving uniform deposition of lithium.The critical current densities of Li_(10)GeP_(2)S_(12)and Li_(6)PS_(5)Cl are increased to 3.25 and 1.25 mA cm^(-2)with Li@LiF-Li_(3)N layer,which are almost triple and twice as those of Li-symmetric cells in the absence of protection layer,respectively.Moreover,the Li@LiF-Li_(3)N/Li10GeP2S12/Li@LiF-Li_(3)N cell can stably cycle for 9000 h at 0.1 mA cm^(-2)under 0.1 mA h cm^(-2),and Li@LiF-Li_(3)N/Li_(6)PS_(5)Cl/Li@LiF-Li_(3)N cell achieves stable Li plating/stripping for 8000 h at 0.1 mA cm^(-2)under10 m A h cm^(-2).The improved dynamic stability of lithium plating/stripping in Li@LiF-Li_(3)N/Li_(10)GeP_(2)S_(12)or Li_(6)PS_(5)Cl interfaces is proved by three-electrode cells.As a result,LiCoO_(2)/electrolytes/Li@LiF-Li_(3)N batteries with Li_(10)GeP_(2)S_(12)and Li_(6)PS_(5)Cl exhibit remarkable cycling stability of 500 cycles with capacity retentions of 93.5%and 89.2%at 1 C,respectively. 展开更多
关键词 LiF-Li_(3)N Sulfide solid electrolytes Interface modification High interface energy all-solid-state batteries
下载PDF
Anode-less all-solid-state batteries:recent advances and future outlook 被引量:1
16
作者 Nohjoon Lee Jihoon Oh Jang Wook Choi 《Materials Futures》 2023年第1期122-131,共10页
While all-solid-state batteries have built global consensus with regard to their impact in safety and energy density,their anode-less versions have attracted appreciable attention because of the possibility of further... While all-solid-state batteries have built global consensus with regard to their impact in safety and energy density,their anode-less versions have attracted appreciable attention because of the possibility of further lowering the cell volume and cost.This perspective article summarizes recent research trends in anode-less all-solid-state batteries(ALASSBs)based on different types of solid electrolytes and anticipates future directions these batteries may take.We particularly aim to motivate researchers in the field to challenge remaining issues in ALASSBs by employing advanced materials and cell designs. 展开更多
关键词 all-solid-state batteries anode-free anode-less interface stability lithium dendrite
原文传递
Elucidating the diffusion pathway of lithium ions in superionic halide solid electrolytes Li_(2+x)Hf_(1-x)In_(x)Cl_(6) for all-solid-state lithium-metal based batteries
17
作者 Kaiyong Tuo Fusheng Yin +1 位作者 Fanghui Mi Chunwen Sun 《Journal of Energy Chemistry》 SCIE EI CSCD 2023年第12期12-23,I0002,共13页
All-solid-state batteries(ASSBs) with inorganic solid-state-electrolytes(SSEs) have been regarded as the promising candidate for next-generation energy storage due to their high energy density and outstanding safety p... All-solid-state batteries(ASSBs) with inorganic solid-state-electrolytes(SSEs) have been regarded as the promising candidate for next-generation energy storage due to their high energy density and outstanding safety performance.However,the representative oxide and sulfide electrolytes suffer from low ionic conductivity and poor(electro)chemical stability,respectively.Herein,we report a series of new halide superionic conductors Li_(2+x)Hf_(1-x)In_(x)Cl_(6) with high ionic conductivity up to 1.05 mS cm^(-1) at 30 ℃ that are simultaneously stable to high voltage.By means of the characterization techniques and bond-valence site energy(BVSE) calculation,insights into the effect of the phase transformation and underlying ionic transport mechanism by In substitution for Hf in Li_(2)HfCl_(6) are provided.Importantly,with the increased amount of aliovalent substitution in Li_(2+x)Hf_(1-x)In_(x)Cl_(6) microcrystal framework,a gradual structure evolution from trigonal to monoclinic phase has been observed,which is accompanied by the redistribution of Li-ions to generate two dimensionally(2D) preferable diffusion pathways through octahedral-tetrahe dral-octahedral sites in In^(3+)-substituted Li_(2)HfCl_(6).Additionally,due to the oxidative stability of Insubstituted Li_(2)HfCl_(6),the bulk-type ASSBs with bare LiCoO_(2) deliver distinguished electrochemical performance. 展开更多
关键词 Aliovalent substitution Halide electrolytes lonic conductivity all-solid-state batteries
下载PDF
Tailoring Practically Accessible Polymer/Inorganic Composite Electrolytes for All-Solid-State Lithium Metal Batteries:A Review 被引量:8
18
作者 Hongmei Liang Li Wang +4 位作者 Aiping Wang Youzhi Song Yanzhou Wu Yang Yang Xiangming He 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第3期266-297,共32页
Solid-state electrolytes(SSEs)are widely considered the essential components for upcoming rechargeable lithium-ion batteries owing to the potential for great safety and energy density.Among them,polymer solid-state el... Solid-state electrolytes(SSEs)are widely considered the essential components for upcoming rechargeable lithium-ion batteries owing to the potential for great safety and energy density.Among them,polymer solid-state electrolytes(PSEs)are competitive candidates for replacing commercial liquid electrolytes due to their flexibility,shape versatility and easy machinability.Despite the rapid development of PSEs,their practical application still faces obstacles including poor ionic conductivity,narrow electrochemical stable window and inferior mechanical strength.Polymer/inorganic composite electrolytes(PIEs)formed by adding ceramic fillers in PSEs merge the benefits of PSEs and inorganic solid-state electrolytes(ISEs),exhibiting appreciable comprehensive properties due to the abundant interfaces with unique characteristics.Some PIEs are highly compatible with high-voltage cathode and lithium metal anode,which offer desirable access to obtaining lithium metal batteries with high energy density.This review elucidates the current issues and recent advances in PIEs.The performance of PIEs was remarkably influenced by the characteristics of the fillers including type,content,morphology,arrangement and surface groups.We focus on the molecular interaction between different components in the composite environment for designing high-performance PIEs.Finally,the obstacles and opportunities for creating high-performance PIEs are outlined.This review aims to provide some theoretical guidance and direction for the development of PIEs. 展开更多
关键词 POLYMER Inorganic composite electrolytes all-solid-state lithium metal batteries FILLERS Ionic conductivity High voltage
下载PDF
Sulfide-Based All-Solid-State Lithium-Sulfur Batteries:Challenges and Perspectives 被引量:4
19
作者 Xinxin Zhu Liguang Wang +2 位作者 Zhengyu Bai Jun Lu Tianpin Wu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第5期376-386,共11页
Lithium-sulfur batteries with liquid electrolytes have been obstructed by severe shuttle effects and intrinsic safety concerns.Introducing inorganic solid-state electrolytes into lithium-sulfur systems is believed as ... Lithium-sulfur batteries with liquid electrolytes have been obstructed by severe shuttle effects and intrinsic safety concerns.Introducing inorganic solid-state electrolytes into lithium-sulfur systems is believed as an effective approach to eliminate these issues without sacrificing the high-energy density,which determines sulfidebased all-solid-state lithium-sulfur batteries.However,the lack of design principles for high-performance composite sulfur cathodes limits their further application.The sulfur cathode regulation should take several factors including the intrinsic insulation of sulfur,well-designed conductive networks,integrated sulfur-electrolyte interfaces,and porous structure for volume expansion,and the correlation between these factors into account.Here,we summarize the challenges of regulating composite sulfur cathodes with respect to ionic/electronic diffusions and put forward the corresponding solutions for obtaining stable positive electrodes.In the last section,we also outlook the future research pathways of architecture sulfur cathode to guide the develop high-performance all-solid-state lithium-sulfur batteries. 展开更多
关键词 all-solid-state lithium-sulfur battery Sulfur cathode Triple-phase interfaces Electrolyte decomposition Volume change
下载PDF
All-Solid-State Thin-Film Lithium-Sulfur Batteries 被引量:4
20
作者 Renming Deng Bingyuan Ke +5 位作者 Yonghui Xie Shoulin Cheng Congcong Zhang Hong Zhang Bingan Lu Xinghui Wang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第5期326-338,共13页
Lithium-sulfur(Li-S)system coupled with thin-film solid electrolyte as a novel high-energy micro-battery has enormous potential for complementing embedded energy harvesters to enable the autonomy of the Internet of Th... Lithium-sulfur(Li-S)system coupled with thin-film solid electrolyte as a novel high-energy micro-battery has enormous potential for complementing embedded energy harvesters to enable the autonomy of the Internet of Things microdevice.However,the volatility in high vacuum and intrinsic sluggish kinetics of S hinder researchers from empirically integrating it into allsolid-state thin-film batteries,leading to inexperience in fabricating all-solid-state thin-film Li-S batteries(TFLSBs).Herein,for the first time,TFLSBs have been successfully constructed by stacking vertical graphene nanosheets-Li2S(VGsLi2S)composite thin-film cathode,lithium-phosphorous-oxynitride(LiPON)thin-film solid electrolyte,and Li metal anode.Fundamentally eliminating Lipolysulfide shuttle effect and maintaining a stable VGs-Li2S/LiPON interface upon prolonged cycles have been well identified by employing the solid-state Li-S system with an“unlimited Li”reservoir,which exhibits excellent longterm cycling stability with a capacity retention of 81%for 3,000 cycles,and an exceptional high temperature tolerance up to 60℃.More impressively,VGs-Li2S-based TFLSBs with evaporated-Li thin-film anode also demonstrate outstanding cycling performance over 500 cycles with a high Coulombic efficiency of 99.71%.Collectively,this study presents a new development strategy for secure and high-performance rechargeable all-solid-state thin-film batteries. 展开更多
关键词 all-solid-state thin-film batteries Li-S batteries Vertical graphene nanosheets Lithium phosphorous oxynitride Li2S
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部