A high characteristic temperature (T0) of 200K from a 1.3μm AlInGaAs/AlInAs single-quantum-well laser diode with the asymmetric waveguide layer structure under CW operation at 20 to 80℃ was obtained,which is the b...A high characteristic temperature (T0) of 200K from a 1.3μm AlInGaAs/AlInAs single-quantum-well laser diode with the asymmetric waveguide layer structure under CW operation at 20 to 80℃ was obtained,which is the best result reported in the laser diodes (LDs) of the same active materials structure and emitting wave- length. AllnGaAs as an active layer,therefore,is very promising for the fabrication of long-wavelength LDs with excellent high-temperature performance. It is found that the asymmetric waveguide layer structure can decrease optical absorption and improve the high-temperature performance and catastrophic optical damage threshold of LDs.展开更多
The low-threshold and high-power oxide-confined 850 nm AlInGaAs strained quantum-well (QW) vertical-cavity surface-emitting lasers (VCSELs) based on the intra-cavity contacted structure are fabricated. The thresho...The low-threshold and high-power oxide-confined 850 nm AlInGaAs strained quantum-well (QW) vertical-cavity surface-emitting lasers (VCSELs) based on the intra-cavity contacted structure are fabricated. The threshold current of 0.1 mA for a 10-μm oxide-aperture device is obtained with the threshold current density of 0.127kA/cm^2. For a 22-μm oxide-aperture device, the peak optical output power reaches to 14.6mW at the current injection of 25 mA under the room temperature and pulsed operation with a threshold current of 2mA, which corresponds to the threshold current density of 0.526kA/cm^2. The lasing wavelength is 855.4nm. The full wave at half maximum is 2.2 nm. The analysis of the characteristics and the fabrication of VCSELs are also described.展开更多
文摘A high characteristic temperature (T0) of 200K from a 1.3μm AlInGaAs/AlInAs single-quantum-well laser diode with the asymmetric waveguide layer structure under CW operation at 20 to 80℃ was obtained,which is the best result reported in the laser diodes (LDs) of the same active materials structure and emitting wave- length. AllnGaAs as an active layer,therefore,is very promising for the fabrication of long-wavelength LDs with excellent high-temperature performance. It is found that the asymmetric waveguide layer structure can decrease optical absorption and improve the high-temperature performance and catastrophic optical damage threshold of LDs.
基金Supported by the National Natural Science Foundation of China under Grant Nos 60276033 and 60506012, the National High Technology Research and Development Programme of China under Grant Nos 2002AA312070 and 2004AA311030, and the Natural Science Foundation of Beijing under Grant No K2200510005003.
文摘The low-threshold and high-power oxide-confined 850 nm AlInGaAs strained quantum-well (QW) vertical-cavity surface-emitting lasers (VCSELs) based on the intra-cavity contacted structure are fabricated. The threshold current of 0.1 mA for a 10-μm oxide-aperture device is obtained with the threshold current density of 0.127kA/cm^2. For a 22-μm oxide-aperture device, the peak optical output power reaches to 14.6mW at the current injection of 25 mA under the room temperature and pulsed operation with a threshold current of 2mA, which corresponds to the threshold current density of 0.526kA/cm^2. The lasing wavelength is 855.4nm. The full wave at half maximum is 2.2 nm. The analysis of the characteristics and the fabrication of VCSELs are also described.