期刊文献+
共找到134,240篇文章
< 1 2 250 >
每页显示 20 50 100
Effect of Liquid Temperature on Surface and Mechanical Characteristics of Al-Mg Alloy Treated with a Cavitating Waterjet
1
作者 Can Kang Shifeng Yan +2 位作者 Haixia Liu Jie Chen Kejin Ding 《Fluid Dynamics & Materials Processing》 EI 2024年第11期2431-2442,共12页
The presented study aims to reveal the effect of liquid temperature on cavitation-induced erosion of an Al-Mgalloy. An experimental work was conducted using a submerged cavitating waterjet to impact the specimen surfa... The presented study aims to reveal the effect of liquid temperature on cavitation-induced erosion of an Al-Mgalloy. An experimental work was conducted using a submerged cavitating waterjet to impact the specimen surface.For a certain cavitation number and a given standoff distance, different liquid temperatures were considered.Accordingly, a comprehensive comparison was implemented by inspecting the mass loss and surface morphologyof the tested specimens. The results show that the cumulative mass loss increases continuously with the liquidtemperature. A cavitation zone with an irregular profile becomes evident as the cavitation treatment proceeds.Increasing the temperature promotes the generation of cavitation bubbles. Large erosion pits are induced aftersevere material removal. The microhardness increases with the distance from the target surface. At a liquidtemperature of 50℃, the microhardness fluctuates apparently with increasing the depth of indentation. 展开更多
关键词 Cavitation erosion al-mg alloy liquid temperature mass loss surface morphology MICROHARDNESS
下载PDF
Preheating-assisted solid-state friction stir repair of Al-Mg-Si alloy plate at different rotational speeds 被引量:1
2
作者 Hui Wang Yidi Li +3 位作者 Ming Zhang Wei Gong Ruilin Lai Yunping Li 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第4期725-736,共12页
Additive friction stir deposition(AFSD)is a novel structural repair and manufacturing technology has become a research hotspot at home and abroad in the past five years.In this work,the microstructural evolution and m... Additive friction stir deposition(AFSD)is a novel structural repair and manufacturing technology has become a research hotspot at home and abroad in the past five years.In this work,the microstructural evolution and mechanical performance of the Al-Mg-Si alloy plate repaired by the preheating-assisted AFSD process were investigated.To evaluate the tool rotation speed and substrate preheating for repair quality,the AFSD technique was used to additively repair 5 mm depth blind holes on 6061 aluminum alloy substrates.The results showed that preheat-assisted AFSD repair significantly improved joint bonding and joint strength compared to the control non-preheat substrate condition.Moreover,increasing rotation speed was also beneficial to improve the metallurgical bonding of the interface and avoid volume defects.Under preheating conditions,the UTS and elongation were positively correlated with rotation speed.Under the process parameters of preheated substrate and tool rotation speed of 1000 r/min,defect-free specimens could be obtained accompanied by tensile fracture occurring in the substrate rather than the repaired zone.The UTS and elongation reached the maximum values of 164.2MPa and 13.4%,which are equivalent to 99.4%and 140%of the heated substrate,respectively. 展开更多
关键词 additive friction stir deposition structural repair tool rotation speed Al alloy
下载PDF
Study on Dynamic Mechanical Behavior of Al-Mg-Si Alloy
3
作者 陶小旺 LIU Jibo +3 位作者 LIU Xianbin CHEN Jianbin WANG Yonggang 汪小锋 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第2期454-462,共9页
The dynamic mechanical behavior of Al-Mg-Si alloy was investigated under different strain rates by mechanical property and microstructure characterization,constitutive behavior analysis and numerical simulation in the... The dynamic mechanical behavior of Al-Mg-Si alloy was investigated under different strain rates by mechanical property and microstructure characterization,constitutive behavior analysis and numerical simulation in the present study.As the strain rate increases,the yield strength,ultimate tensile strength and elongation increase first,then remain almost constant,and finally increase.The alloy always exhibits a typical ductile fracture mode,not depending on the strain rate.However,as the strain rate increases,the number of dimples gradually increases.Tensile deformation can refine grains,however,the grain structure is slightly affected by the strain rate.An optimized Johnson-Cook constitutive equation was used to describe the mechanical behavior and obtained by fitting the true stress-strain curves.The parameter C was described by a function related to the strain rate.The fitting true stress-strain curves by the JC model agree very well with the experimental true stress-strain curves.The true stress-strain curves calculated by the finite element numerical simulation agree well with the experimental true stress-strain curves. 展开更多
关键词 al-mg-Si alloy strain rate mechanical property MICROSTRUCTURE Johnson-Cook model finite element simulation
下载PDF
Preparation of FeCoNi medium entropy alloy from Fe^(3+)-Co^(2+)-Ni^(2+)solution system
4
作者 Zongyou Cheng Qing Zhao +3 位作者 Mengjie Tao Jijun Du Xingxi Huang Chengjun Liu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第1期92-101,共10页
In recent years,medium entropy alloys have become a research hotspot due to their excellent physical and chemical performances.By controlling reasonable elemental composition and processing parameters,the medium entro... In recent years,medium entropy alloys have become a research hotspot due to their excellent physical and chemical performances.By controlling reasonable elemental composition and processing parameters,the medium entropy alloys can exhibit similar properties to high entropy alloys and have lower costs.In this paper,a FeCoNi medium entropy alloy precursor was prepared via sol-gel and coprecipitation methods,respectively,and FeCoNi medium entropy alloys were prepared by carbothermal and hydrogen reduction.The phases and magnetic properties of FeCoNi medium entropy alloy were investigated.Results showed that FeCoNi medium entropy alloy was produced by carbothermal and hydrogen reduction at 1500℃.Some carbon was detected in the FeCoNi medium entropy alloy prepared by carbothermal reduction.The alloy prepared by hydrogen reduction was uniform and showed a relatively high purity.Moreover,the hydrogen reduction product exhibited better saturation magnetization and lower coercivity. 展开更多
关键词 medium entropy alloy SOL-GEL CO-PRECIPITATION carbothermal hydrogen reduction
下载PDF
Influence of introducing Zr,Ti,Nb and Ce elements on externally solidified crystals and mechanical properties of high-pressure die-casting Al–Si alloy
5
作者 Junjie Li Wenbo Yu +5 位作者 Zhenyu Sun Weichen Zheng Liangwei Zhang Yanling Xue Wenning Liu Shoumei Xiong 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第1期147-153,共7页
High pressure die casting(HPDC)AlSi10Mn Mg alloy castings are widely used in the automobile industry.Mg can optimize the mechanical properties of castings through heat treatment,while the release of thermal stress aro... High pressure die casting(HPDC)AlSi10Mn Mg alloy castings are widely used in the automobile industry.Mg can optimize the mechanical properties of castings through heat treatment,while the release of thermal stress arouses the deformation of large integrated die-castings.Herein,the development of non-heat treatment Al alloys is becoming the hot topic.In addition,HPDC contains externally solidified crystals(ESCs),which are detrimental to the mechanical properties of castings.To achieve high strength and toughness of non-heat treatment die-casting Al-Si alloy,we used AlSi9Mn alloy as matrix with the introduction of Zr,Ti,Nb,and Ce.Their influences on ESCs and mechanical properties were systematically investigated through three-dimensional reconstruction and thermodynamic simulation.Our results reveal that the addition of Ti increased ESCs'size and porosity,while the introduction of Nb refined ESCs and decreased porosity.Meanwhile,large-sized Al_3(Zr,Ti)phases formed and degraded the mechanical properties.Subsequent introduction of Ce resulted in the poisoning effect and reduced mechanical properties. 展开更多
关键词 aluminium alloy high-pressure die-casting externally solidified crystals non-heat treatment
下载PDF
Effects of the extrusion parameters on microstructure,texture and room temperature mechanical properties of extruded Mg-2.49Nd-1.82Gd-0.2Zn-0.2Zr alloy
6
作者 Chenjin Zhang Guangyu Yang +4 位作者 Lei Xiao Zhiyong Kan Jing Guo Qiang Li Wanqi Jie 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第1期136-146,共11页
Microstructure,texture,and mechanical properties of the extruded Mg-2.49Nd-1.82Gd-0.2Zn-0.2Zr alloy were investigated at different extrusion temperatures(260 and 320℃),extrusion ratios(10:1,15:1,and 30:1),and extrusi... Microstructure,texture,and mechanical properties of the extruded Mg-2.49Nd-1.82Gd-0.2Zn-0.2Zr alloy were investigated at different extrusion temperatures(260 and 320℃),extrusion ratios(10:1,15:1,and 30:1),and extrusion speeds(3 and 6 mm/s).The experimental results exhibited that the grain sizes after extrusion were much finer than that of the homogenized alloy,and the second phase showed streamline distribution along the extrusion direction(ED).With extrusion temperature increased from 260 to 320℃,the microstructure,texture,and mechanical properties of alloys changed slightly.The dynamic recrystallization(DRX)degree and grain sizes enhanced as the extrusion ratio increased from 10:1 to 30:1,and the strength gradually decreased but elongation(EL)increased.With the extrusion speed increased from 3 to 6 mm/s,the grain sizes and DRX degree increased significantly,and the samples presented the typical<2111>-<1123>rare-earth(RE)textures.The alloy extruded at 260℃ with extrusion ratio of 10:1 and extrusion speed of 3 mm/s showed the tensile yield strength(TYS)of 213 MPa and EL of 30.6%.After quantitatively analyzing the contribution of strengthening mechanisms,it was found that the grain boundary strengthening and dislocation strengthening played major roles among strengthening contributions.These results provide some guidelines for enlarging the industrial application of extruded Mg-RE alloy. 展开更多
关键词 Mg-rare earth alloys extrusion temperature extrusion ratio extrusion speed strengthening mechanisms
下载PDF
Study on the hydrogen absorption properties of a YGdTbDyHo rare-earth high-entropy alloy
7
作者 Tongyue Li Ziliang Xie +5 位作者 Wenjiao Zhou Huan Tong Dawen Yang Anjia Zhang Yuan Wu Xiping Song 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第1期127-135,共9页
This study investigated the microstructure and hydrogen absorption properties of a rare-earth high-entropy alloy(HEA),YGdTbDyHo.Results indicated that the YGdTbDyHo alloy had a microstructure of equiaxed grains,with t... This study investigated the microstructure and hydrogen absorption properties of a rare-earth high-entropy alloy(HEA),YGdTbDyHo.Results indicated that the YGdTbDyHo alloy had a microstructure of equiaxed grains,with the alloy elements distributed homogeneously.Upon hydrogen absorption,the phase structure of the HEA changed from a solid solution with an hexagonal-close-packed(HCP)structure to a high-entropy hydride with an faced-centered-cubic(FCC)structure without any secondary phase precipitated.The alloy demonstrated a maximum hydrogen storage capacity of 2.33 H/M(hydrogen atom/metal atom)at 723 K,with an enthalpy change(ΔH)of-141.09 kJ·mol^(-1)and an entropy change(ΔS)of-119.14 J·mol^(-1)·K^(-1).The kinetic mechanism of hydrogen absorption was hydride nucleation and growth,with an apparent activation energy(E_(a))of 20.90 kJ·mol^(-1).Without any activation,the YGdTbDyHo alloy could absorb hydrogen quickly(180 s at 923 K)with nearly no incubation period observed.The reason for the obtained value of 2.33 H/M was that the hydrogen atoms occupied both tetrahedral and octahedral interstices.These results demonstrate the potential application of HEAs as a high-capacity hydrogen storage material with a large H/M ratio,which can be used in the deuterium storage field. 展开更多
关键词 RARE-EARTH high-entropy alloy hydrogen absorption capacity pressure–composition–temperature curves KINETICS
下载PDF
Microstructure evolution and dislocation configurations in nanostructured Al-Mg alloys processed by high pressure torsion 被引量:3
8
作者 刘满平 蒋婷慧 +3 位作者 谢学锋 刘强 李雪峰 Hans J.ROVEN 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第12期3848-3857,共10页
Microstructure evolution and dislocation configurations in nanostructured Al–Mg alloys processed by high pressure torsion (HPT) were analyzed by transmission electron microscopy (TEM) and high-resolution TEM (HR... Microstructure evolution and dislocation configurations in nanostructured Al–Mg alloys processed by high pressure torsion (HPT) were analyzed by transmission electron microscopy (TEM) and high-resolution TEM (HRTEM). The results show that the grains less than 100 nm have sharp grain boundaries (GBs) and are completely free of dislocations. In contrast, a high density of dislocation as high as 1017 m^-2 exists within the grains larger than 200 nm and these larger grains are usually separated into subgrains and dislocation cells. The dislocations are 60° full dislocations with Burgers vectors of 1/2〈110〉and most of them appear as dipoles and loops. The microtwins and stacking faults (SFs) formed by the Shockley partials from the dissociation of both the 60° mixed dislocation and 0° screw dislocation in ultrafine grains were simultaneously observed by HRTEM in the HPT Al–Mg alloys. These results suggest that partial dislocation emissions, as well as the activation of partial dislocations could also become a deformation mechanism in ultrafine-grained aluminum during severe plastic deformation. The grain refinement mechanism associated with the very high local dislocation density, the dislocation cells and the non-equilibrium GBs, as well as the SFs and microtwins in the HPT Al-Mg alloys were proposed. 展开更多
关键词 al-mg aluminum alloy severe plastic deformation high pressure torsion dislocation configurations grain refinement deformation mechanism
下载PDF
Melting purification process and refining effect of 5083 Al-Mg alloy 被引量:2
9
作者 马成国 亓淑艳 +2 位作者 李双 胥焕岩 何秀兰 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第5期1346-1351,共6页
To improve the poor stability of casting process of Al alloy with high Mg content, which leads to poor final product quality, the melting purification process and the influences of the refiner on the microstructure an... To improve the poor stability of casting process of Al alloy with high Mg content, which leads to poor final product quality, the melting purification process and the influences of the refiner on the microstructure and defect of 5083 alloy were studied. The results show that the optimized process for the rotary impeller degassing of 5083 alloy is as follows: a rotary speed of 250-400 r/min; a gas flow of 1.2-2.0 L/s, a refining time of 10-15 min. This optimized process can reduce the gas content in the solid alloy to 2× 10^-3 mL/g or lower. Due to the addition of grain refiner, the cast microstructure of 5083 alloy is refined. The Al-5Ti-IB wire shows the best refining effect among all the refiners. The refining effect is improved with the increase of grain refiner addition amount. And the refinement effects become stable when Ti content reaches 0.1% or higher. The surface crinkling defect of the billet can be easily found in the alloy refined with Al-5Ti-IB wire compared with the alloys refined with other refiners. 展开更多
关键词 al-mg alloy MELTING purification process grain refiner
下载PDF
Deformation defects and electron irradiation effect in nanostructured Al-Mg alloy processed by severe plastic deformation 被引量:3
10
作者 刘满平 孙少纯 +4 位作者 Hans J.ROVEN 于瀛大 张桢 Maxim MURASHKIN Ruslan Z.VALIEV 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第8期1810-1816,共7页
In order to explore the exact nature of deformation defects previously observed in nanostructured Al-Mg alloys subjected to severe plastic deformation, a more thorough examination of the radiation effect on the format... In order to explore the exact nature of deformation defects previously observed in nanostructured Al-Mg alloys subjected to severe plastic deformation, a more thorough examination of the radiation effect on the formation of the planar defects in the high pressure torsion (HPT) alloys was conducted using high-resolution transmission electron microscopy (HRTEM). The results show that high density defects in the HRTEM images disappear completely when these images are exposed under the electron beam for some duration of time. At the same time, lattice defects are never observed within no-defect areas even when the beam-exposure increases to the degree that holes appear in the areas. Therefore, it is confirmed that the planar defects observed in the HPT alloys mainly result from the significant plastic deformation and are not due to the radiation effect during HRTEM observation. 展开更多
关键词 al-mg alloy severe plastic deformation high pressure torsion electron irradiation deformation defects transmission electron microscopy
下载PDF
Effect of minor Zr and Sc on microstructures and mechanical properties of Al-Mg-Si-Cu-Cr-V alloys 被引量:11
11
作者 蒙毅 赵志浩 崔建忠 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第7期1882-1889,共8页
The effects of minor contents of Zr and Sc on the microstructures and mechanical properties of Al-Mg-Si-Cu-Cr-V alloy were studied. The results show that the effects of minor Zr and Sc on the as-cast grain refinement ... The effects of minor contents of Zr and Sc on the microstructures and mechanical properties of Al-Mg-Si-Cu-Cr-V alloy were studied. The results show that the effects of minor Zr and Sc on the as-cast grain refinement in the ingots, the improvement in the strength of the as-extruded alloys and the restriction of high angle grain boundaries in the aged alloys can be sorted as Al3ScAl3 (Zr,Sc)Al3Zr. None of them could stop the nucleation of recrystallization, but Al3 (Zr,Sc) phase is a more effective inhibitor of dislocation movement compared to Al3 Sc in the aged alloys. Compared with the mechanical properties of the aged alloy added only 0.15% Sc, the joint addition of Zr and Sc to the alloy leads to a very slight decrease in strength with even no cost of ductility. Taking both the production cost and the little bad influence on mechanical properties into consideration, an optimal content of Zr and Sc in the Al-Mg-Si-Cu-Cr-V alloy to substitute 0.15% Sc is 0.13% Zr+0.03% Sc. 展开更多
关键词 al-mg-Si-Cu alloy RECRYSTALLIZATION microstructure mechanical property
下载PDF
Corrosion mechanism associated with Mg_2Si and Si particles in Al-Mg-Si alloys 被引量:21
12
作者 曾锋利 卫中领 +4 位作者 李劲风 李朝兴 谭星 张昭 郑子樵 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第12期2559-2567,共9页
The electrochemical behaviors and coupling behaviors of the Mg2Si and Si phases with α(Al) were investigated, the corrosion morphologies of Al alloys containing Mg2Si and Si particles were observed, and the corrosi... The electrochemical behaviors and coupling behaviors of the Mg2Si and Si phases with α(Al) were investigated, the corrosion morphologies of Al alloys containing Mg2Si and Si particles were observed, and the corrosion mechanism associated with them in Al-Mg-Si alloys was advanced. The results show that Si particle is always cathodic to the alloy base, Mg2Si is anodic to the alloy base and corrosion occurs on its surface at the beginning. However, during its corrosion process, the preferential dissolution of Mg and the enrichment of Si make Mg2Si transform to cathode from anode, leading to the anodic dissolution and corrosion of the alloy base at its adjacent periphery at a later stage. As the mole ratio of Mg to Si in an Al-Mg-Si alloy is less than 1.73, it contains Mg2Si and Si particles simultaneously in the grain boundary area, and corrosion initiates on the Mg2Si surface and the precipitate-free zone (PFZ) at the adjacent periphery of Si particle. As corrosion time is extended, Si particle leads to severe anodic dissolution and corrosion of the PFZ at its adjacent periphery, expedites the polarity transformation between Mg2Si and the PFZ and accelerates the corrosion of PFZ at the adjacent periphery of Mg2Si particle. 展开更多
关键词 al-mg-Si alloys intergranular corrosion corrosion mechanism electrochemical behaviors MG2SI SI
下载PDF
Influence of thermomechanical processing on microstructure,texture evolution and mechanical properties of Al-Mg-Si-Cu alloy sheets 被引量:3
13
作者 汪小锋 郭明星 +3 位作者 曹零勇 罗晋如 张济山 庄林忠 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第6期1752-1762,共11页
Influence of thermomechanical processing on the microstructure, texture evolution and mechanical properties of A1-Mg-Si-Cu alloy sheets was studied systematically. The quite weak mechanical properties anisotropy was o... Influence of thermomechanical processing on the microstructure, texture evolution and mechanical properties of A1-Mg-Si-Cu alloy sheets was studied systematically. The quite weak mechanical properties anisotropy was obtained in the alloy sheet through thermomechanical processing optimizing. The highly elongated microstmcture is the main structure for the hot or cold-rolled alloy sheets. H {001 } (110) and E { 111 } (110) are the main texture components in the surface layer of hot-rolled sheet, while ]/-fibre is dominant in quarter and center layers. Compared with the hot-rolled sheet, the intensities offl-fibre components are higher after the first cold rolling, but H {001 }(110) component in the surface layer decreases greatly. Almost no deformation texatre can be observed after intermediate annealing. And fl-fibre becomes the main texture again after the final cold rolling. With the reduction of the thickness, the through-thickness texture gradients become much weaker. The through-thickness recrystallization texture in the solution treated sample only has cubeyD {001 }(310) component. The relationship among thermomechanical processing, microstructure, texture and mechanical orouerties was analyzed. 展开更多
关键词 Ai-Mg-Si-Cu alloy therrnomechanical processing FORMABILITY MICROSTRUCTURE texture
下载PDF
Microstructure and texture characterization of superplastic Al-Mg-Li alloy 被引量:4
14
作者 李红萍 叶凌英 +2 位作者 张盼 钟掘 黄明辉 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第7期2079-2087,共9页
A novel thermomechanical processing was developed for producing fine grained Al-Mg-Li alloy sheets. The influences of static recrystallization annealing on the grain structure and superplastic behavior were investigat... A novel thermomechanical processing was developed for producing fine grained Al-Mg-Li alloy sheets. The influences of static recrystallization annealing on the grain structure and superplastic behavior were investigated. The results show that the refined microstructure has a variation in the distribution of grain size, shape and texture across the normal direction of the sheet. The surface layer (SL) has fine, nearly equiaxed grains with a rotated cUbeND {001 }(310) orientation, whereas the center layer (CL) has coarse, elongated grains with a portion of a fiber orientation. Increasing static recrystallized temperature results in grain growth in the full thickness, decreasing of grain aspect ratio in the center layer, texture sharpening in the surface layer, but weakening in the center layer as well as decreasing of superplastic elongation. Increasing the annealing temperature also produces an sharpening of the rotated cube {001}(310) component and a decreasing of the a fiber texture in the full thickness of the sheet. The formation mechanisms of recrystallization texture at various temperatures and layers were discussed. 展开更多
关键词 5A90 Al-Li alloy thermomechanical processing TEXTURE SUPERPLASTICITY RECRYSTALLIZATION
下载PDF
Effects of high temperature pre-straining on natural aging and bake hardening response of Al-Mg-Si alloys 被引量:3
15
作者 贾志宏 丁立鹏 +2 位作者 翁瑶瑶 文章 刘庆 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第4期924-929,共6页
The influences of high temperature pre-straining (HT-PS) on the natural aging and bake hardening of Al?Mg?Si alloys were investigated by Vickers microhardness measurements, differential scanning calorimetry (DSC) anal... The influences of high temperature pre-straining (HT-PS) on the natural aging and bake hardening of Al?Mg?Si alloys were investigated by Vickers microhardness measurements, differential scanning calorimetry (DSC) analysis and transmission electron microscopy (TEM) characterization. The results show that pre-straining at 170 °C immediately after quenching can effectively resolve the rather high T4 temper hardness caused by the conventional room temperature (RT) pre-straining treatment, and give a better bake hardening response (BHR) after paint-bake cycle. HT-PS 7% at 170 °C for 10 min is chosen as the optimum process as it provides lower T4 temper hardness and better BHR. The simultaneous introduction of dislocations and Cluster (2) can significantly suppress the natural aging and promote the precipitation of β″ phase, and reduce the effects of deformation hardening by dynamic recovery. 展开更多
关键词 al-mg-Si alloy high temperature pre-straining natural aging bake hardening response
下载PDF
Growth and corrosion behaviors of thin anodic alumina membrane on AA5083 Al-Mg alloy in incalescent medium 被引量:2
16
作者 王加余 李澄 +2 位作者 郑顺丽 尹成勇 王艳慧 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第9期3023-3030,共8页
A self-ordered porous film was fabricated on aluminum alloy in a ternary boric-sulfuric-oxalic acid electrolyte system. By means of voltage–time response, the oxidation process as well as the growth efficiency was st... A self-ordered porous film was fabricated on aluminum alloy in a ternary boric-sulfuric-oxalic acid electrolyte system. By means of voltage–time response, the oxidation process as well as the growth efficiency was studied. Field emission scanning electron microscopy(FE-SEM) was adopted to reveal the morphological and microstructural features of as-fabricated oxide layers. The corrosion protection properties of the films were investigated by electrochemical impedance spectroscopy and potentiodynamic polarization measurements. The results showed that increasing the concentration of the double ionic layer located at the oxide interface could accelerate the film growth rate. The anodic oxidative layer with thickness of 8-9 μm and pore diameter of 10-14 nm maintains the pattern and topography of workpieces, compared with the overall closed film with hierarchical structure. Both samples exhibited much lower corrosion current density after boil water sealing. Meanwhile, a superior stability could be achieved through raising the ambient temperature. 展开更多
关键词 5083 aluminum alloy ANODIZING film growth efficiency corrosion behavior
下载PDF
Al-Mg系合金中合金化元素作用及其对力学性能的影响 被引量:2
17
作者 赵飞 黄文森 《贵州师范大学学报(自然科学版)》 CAS 北大核心 2024年第1期1-11,18,F0002,共13页
铝镁合金是轻量化材料应用领域中一种重要的金属材料,属于中高强度铝合金,具有较高的塑性、良好的耐蚀性以及优良的焊接性等优势,目前在航空航天、交通运输和军工制造等领域具有广阔的应用前景。笔者综述了铝镁合金力学性能特点以及用途... 铝镁合金是轻量化材料应用领域中一种重要的金属材料,属于中高强度铝合金,具有较高的塑性、良好的耐蚀性以及优良的焊接性等优势,目前在航空航天、交通运输和军工制造等领域具有广阔的应用前景。笔者综述了铝镁合金力学性能特点以及用途,介绍了Al-Mg系合金中的强化机制,重点阐述了Al-Mg系合金中主合金化元素Mg及其含量对合金微观组织和力学性能的影响规律及机理,详细论述了Mn、Zr、Ti、Sc、Er、Y等微合金化元素的作用以及对Al-Mg系合金微观组织和力学性能的影响规律。最后,结合Al-Mg系合金当前研究现状,提出了今后值得研究的方向。 展开更多
关键词 al-mg系合金 合金化 强化机制 力学性能
下载PDF
碳纳米管增韧Al-Mg合金复合材料的制备与性能研究
18
作者 晏丽琴 黄勇 《功能材料》 CAS CSCD 北大核心 2024年第1期1212-1216,共5页
选择碳纳米管为增强相,通过搅拌铸造法制备了碳纳米管增韧Al-Mg合金复合材料,研究了碳纳米管的添加量对复合材料力学性能、微观组织以及韧性的影响,并探究了碳纳米管对Al-Mg合金的增韧机理。结果表明,掺入适量的碳纳米管后细化了Al-Mg... 选择碳纳米管为增强相,通过搅拌铸造法制备了碳纳米管增韧Al-Mg合金复合材料,研究了碳纳米管的添加量对复合材料力学性能、微观组织以及韧性的影响,并探究了碳纳米管对Al-Mg合金的增韧机理。结果表明,掺入适量的碳纳米管后细化了Al-Mg合金复合材料的晶粒,晶粒尺寸约为80μm,当碳纳米管的添加量为0.8%(质量分数)时,复合材料的断口形貌最均匀。随着碳纳米管添加量的增大,复合材料的抗拉强度、断裂伸长率、硬度均表现出先增大后降低的趋势,当碳纳米管的添加量为0.8%(质量分数)时,抗拉强度、断裂伸长率和硬度均达到了最大值,分别为208.6 MPa、15.8%和53.1 HB。适量碳纳米管的添加显著改善了Al-Mg合金的韧性,使断裂延伸率逐渐增大,屈服阶段延长,韧性得到提高,这是因为适量的碳纳米管添加后能够与合金发生较好的结合,并贯穿于合金的裂纹中,发挥出了桥联作用,阻碍了裂纹的萌生和扩展,从而改善了Al-Mg合金复合材料的韧性,延缓了合金的失效过程,延长了合金的屈服阶段。综上分析可知,碳纳米管的最佳添加量为0.8%(质量分数)。 展开更多
关键词 碳纳米管 al-mg合金 力学性能 硬度 韧性
下载PDF
Effect of copper on precipitation and baking hardening behavior of Al-Mg-Si alloys 被引量:2
19
作者 刘璁慧 张新明 +2 位作者 唐建国 刘星兴 陈亮 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第7期2289-2294,共6页
The effects of copper on the ageing precipitation behavior of as-quenched and pre-aged AA6016 aluminum alloy were studied by differential scanning calorimetry (DSC), Vickers hardness measurement and transmission ele... The effects of copper on the ageing precipitation behavior of as-quenched and pre-aged AA6016 aluminum alloy were studied by differential scanning calorimetry (DSC), Vickers hardness measurement and transmission electronic microscopy (TEM). The results indicate that the addition of copper facilitates the growth of clusters (GP I) to the critical size during pre-ageing. Therefore, the addition of copper accelerates the transition from GP I (pre-β") to GP II (β") during final artificial ageing, and finally results in the favorable paint-bake response. However, the one with the copper level of 0.3% does not show significant baking hardening response as expected. Pre-aging can also reduce the detrimental effect due to natural aging of copper-containing alloys. 展开更多
关键词 al-mg-Si-Cu alloy baking hardening behavior Cu contained precipitates
下载PDF
Effects of minor Zn content on microstructure and corrosion properties of Al-Mg alloy 被引量:4
20
作者 赵经纬 罗兵辉 +3 位作者 何克坚 柏振海 李彬 陈维 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第12期3051-3059,共9页
The effects of different Zn contents in Al-Mg alloy on the microstructure characterizations were observed by advanced electron microscopy and the corrosion properties were investigated by the inter-granular corrosion ... The effects of different Zn contents in Al-Mg alloy on the microstructure characterizations were observed by advanced electron microscopy and the corrosion properties were investigated by the inter-granular corrosion tests,the exfoliation corrosion tests,and the Potentiodynamic polarizaion tests.The τ phase(Mg_(32)(Al,Zn)_(49)) forms on the pre-existing Mn-rich particles and at the grain boundaries.According to the theory of binding energy,the formation of τ phase is much easier than that of β phase(Al_3Mg_2),somehow replacing β phase and reducing the possibility of β phase precipitation.This change dramatically decreases the susceptibility of corrosion.The Zn addition increases the corrosion resistance of Al-Mg alloy with an optimal value of 0.31%.When the Zn addition is increased to 0.78%,however,the corrosion resistance of alloy decreases once again but it is still better than that of the alloy without Zn addition. 展开更多
关键词 al-mg alloy Zn addition r phase (Mg32 (Al Zn)49 CORROSION
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部