Using a special constant deflection device, the changes in dislocation configuration ahead of a loaded crack tip for 60Fe40Ni alloy. before and after magnetization in a magnetic field, have been studied in TEM. The re...Using a special constant deflection device, the changes in dislocation configuration ahead of a loaded crack tip for 60Fe40Ni alloy. before and after magnetization in a magnetic field, have been studied in TEM. The results showed that the magnetization for 60Fe40Ni alloy could enhance dislocation emission, multiplication and motion. Also, the mechanical properties of 60Fe40Ni alloy, in air and in the magnetic field respectively have been investigated using the slow strain rate tension. And the results indicated that magnetization could make the yield strength corresponding to decrease by 26 percent, but did not influence the ultimate tensile strength and the fracture strain, which showed that magnetization could enhance plastic deformation.展开更多
This paper summarizes a process for the preparation of Al5%Zr master alloy by the reduction of K2ZrF6 with aluminium. The reduction in grain size of aluminium by addition of known quantity of master alloy is also stud...This paper summarizes a process for the preparation of Al5%Zr master alloy by the reduction of K2ZrF6 with aluminium. The reduction in grain size of aluminium by addition of known quantity of master alloy is also studied.展开更多
An analytical model is established to study the influence of lattice distortion and fraction of Hf on the yield strength of the BCC TiNbTaZrHfx multi-component high entropy alloys (HEAs). Meanwhile, the mechanism of...An analytical model is established to study the influence of lattice distortion and fraction of Hf on the yield strength of the BCC TiNbTaZrHfx multi-component high entropy alloys (HEAs). Meanwhile, the mechanism of solid solution strengthening caused by lattice distortion is also discussed in the HEA. The distorted unit cell is introduced to indicate the lattice distortion effects induced by the differences of the atomic size and shear modulus by doping other elements in Ti-based metal. The results show that the calculated values of the alloying yield strength considering the path of least resistance are obtained with regard to various grain sizes for the equiatomic TiNbTaZrHf HEA, which is well in line with the experimental results. Furthermore, it is predicted that the alloying yield strength is the largest value in the case of the same grain size for the Hf atomic fraction of 0.122. The meaningful modeling could provide a theoretical method to investigate the yield strength and alloying design of other BCC HEAs in the future.展开更多
Deformation and texture evolution of AZ31 B magnesium(Mg) alloy sheet under uniaxial tension, compression, and reverse loading after different pre-strain(compression and tension) were investigated experimentally. ...Deformation and texture evolution of AZ31 B magnesium(Mg) alloy sheet under uniaxial tension, compression, and reverse loading after different pre-strain(compression and tension) were investigated experimentally. The results indicate that the pre-compressive strain remarkably affects the reverse tensile yield stress and the width of the detwinning-dominant stage during inverse tension process. Similar to stress–strain curve of the uniaxial compression, the curve of reverse tensile yield value also has ‘S' shape, and its minimum value is only 38 MPa. The relationship between pre-compressive strain and the width of detwinning-dominant stage presents a linear growth, and the greater the precompressive strain is, the smaller the strain hardening rate of the detwinning-slip-dominant stage is. Compared with the reverse tension under pre-compression, the influence of the pre-tension deformation on the deformation mechanism of subsequent compression is relatively simple. With the increase in pre-tension strain, the yield stress of the reverse loading is rising.展开更多
基金supported by the National Natural Science Foundation of China(No.19891180)
文摘Using a special constant deflection device, the changes in dislocation configuration ahead of a loaded crack tip for 60Fe40Ni alloy. before and after magnetization in a magnetic field, have been studied in TEM. The results showed that the magnetization for 60Fe40Ni alloy could enhance dislocation emission, multiplication and motion. Also, the mechanical properties of 60Fe40Ni alloy, in air and in the magnetic field respectively have been investigated using the slow strain rate tension. And the results indicated that magnetization could make the yield strength corresponding to decrease by 26 percent, but did not influence the ultimate tensile strength and the fracture strain, which showed that magnetization could enhance plastic deformation.
文摘This paper summarizes a process for the preparation of Al5%Zr master alloy by the reduction of K2ZrF6 with aluminium. The reduction in grain size of aluminium by addition of known quantity of master alloy is also studied.
基金support from the National Natural Science Foundation of China (No. 11372103 and 11572118)the Hunan Provincial Science Fund for Distinguished Young Scholars (No. 2015JJ1006)+1 种基金the Fok Ying-Tong Education Foundation, China (No. 141005)the project of Innovation-driven Plan of Central South University, the State Key Laboratory of Powder Metallurgy
文摘An analytical model is established to study the influence of lattice distortion and fraction of Hf on the yield strength of the BCC TiNbTaZrHfx multi-component high entropy alloys (HEAs). Meanwhile, the mechanism of solid solution strengthening caused by lattice distortion is also discussed in the HEA. The distorted unit cell is introduced to indicate the lattice distortion effects induced by the differences of the atomic size and shear modulus by doping other elements in Ti-based metal. The results show that the calculated values of the alloying yield strength considering the path of least resistance are obtained with regard to various grain sizes for the equiatomic TiNbTaZrHf HEA, which is well in line with the experimental results. Furthermore, it is predicted that the alloying yield strength is the largest value in the case of the same grain size for the Hf atomic fraction of 0.122. The meaningful modeling could provide a theoretical method to investigate the yield strength and alloying design of other BCC HEAs in the future.
基金supported by the National Nature Science Foundation of China (No. 51174189)
文摘Deformation and texture evolution of AZ31 B magnesium(Mg) alloy sheet under uniaxial tension, compression, and reverse loading after different pre-strain(compression and tension) were investigated experimentally. The results indicate that the pre-compressive strain remarkably affects the reverse tensile yield stress and the width of the detwinning-dominant stage during inverse tension process. Similar to stress–strain curve of the uniaxial compression, the curve of reverse tensile yield value also has ‘S' shape, and its minimum value is only 38 MPa. The relationship between pre-compressive strain and the width of detwinning-dominant stage presents a linear growth, and the greater the precompressive strain is, the smaller the strain hardening rate of the detwinning-slip-dominant stage is. Compared with the reverse tension under pre-compression, the influence of the pre-tension deformation on the deformation mechanism of subsequent compression is relatively simple. With the increase in pre-tension strain, the yield stress of the reverse loading is rising.