Electron density (Ne) in a glow discharge plasma for the surface alloying technique is diagnosed by optical emission spectrometry (OES). With CH4 as the feeding gas, Ne is obtained by comparing the Hβ spectrum ac...Electron density (Ne) in a glow discharge plasma for the surface alloying technique is diagnosed by optical emission spectrometry (OES). With CH4 as the feeding gas, Ne is obtained by comparing the Hβ spectrum according to the Stark broadening effect. It is noticed that Ne varies with the working pressures (30 Pa to 70 Pa) and cathode voltages (500 V to 1000 V), respectively. Due to an abnormal glow discharge, Ne is between 1. 71 × 10^15 /cm^3 to 6.64 × 10^15 /cm^3 and increases rapidly with working gas pressures and cathode voltages. The results show that OES is a useful method to measure the plasma parameters in a surface alloying glow discharge plasma.展开更多
TiAl-based alloys have received extensive attention recently due to their excellent properties. However, the weak oxidation resistance at temperatures higher than 800℃ can limit their further high-temperature structu...TiAl-based alloys have received extensive attention recently due to their excellent properties. However, the weak oxidation resistance at temperatures higher than 800℃ can limit their further high-temperature structural applications.To improve the oxidation resistance of a high-Nb-content γ-TiAl alloy(Ti-45 Al-8.5 Nb, in units of at.%), a chromium(Cr)coating is prepared by using the plasma surface alloying technique, separately, at 800℃ and 1000℃. The x-ray diffraction(XRD) patterns reveal that an oxide surface layer consisting of Cr2O3, Al2O3, and TiO2 is produced on the Cr-coated Nb containing γ-TiAl substrates during the initial oxidation. However, the Cr2O3 is dominated in the oxide surface layer after being isothermally oxidized for 300 h. The oxidation kinetic curves are composed of a parabolic law stage(≤ 90 h) and a biquadratic law stage(≥ 90 h), fit by weight–gain curves. Due to diffusion in the fabrication process and oxidation process,the Cr-coated specimens have an adhesion force after being isothermally oxidized, specifically 69 N for a specimen after oxidation for 300 h. These results demonstrate that the Cr coating enhances the oxidation resistance and adhesion of a Ti-45 Al-8.5 Nb alloy, which may provide a new feasible scheme for designing oxidation protection layers.展开更多
The Mo surface modified layer on titanium was obtained by the plasma surface alloying technique. The structure and composition of the Mo modified titanium were investigated by X-ray diffraction (XRD) and glow discha...The Mo surface modified layer on titanium was obtained by the plasma surface alloying technique. The structure and composition of the Mo modified titanium were investigated by X-ray diffraction (XRD) and glow discharge optical emission spectroscopy (GDOES). The Mo modified layer contains Mo coating on subsurface and diffusion layers between the subsurface and substrate. The Xray diffraction analysis of the Mo modified titanium reveals that the outmost surface of the Mo modified titanium is composed of pure Mo. The electrochemical corrosion performance of the Mo modified titanium in saliva was investigated and compared with that of titanium. The chemical corrosion performance of the Mo modified titanium in 37 ℃ saliva was investigated and compared with that of titanium. The experimental results indicated that self-corroding electric potentials and corrosion-rate of the Mo modified titanium were higher than that of titanium in saliva. Corrosion-rate of the Mo modified titanium was lower than that of titanium in 37 ℃ saliva.展开更多
A series of Ti-Zr-Be-Fe bulk metallic glasses(BMGs)with good glass-forming ability(GFA)and high specific strength have been developed.With different alloying routes and content of Fe,it is found that these alloys exhi...A series of Ti-Zr-Be-Fe bulk metallic glasses(BMGs)with good glass-forming ability(GFA)and high specific strength have been developed.With different alloying routes and content of Fe,it is found that these alloys exhibit different GFA and mechanical properties.The effects of Fe addition on the GFA and mechanical properties of Ti-Zr-Be alloy are systemically investigated.The possible mechanisms for the improvement or damage to the GFA by addition of Fe can be interpreted in view of the mixing enthalpy,atomic size differences and electronegativity differences of the alloys,while the mechanical properties strongly depend on the Poisson’s ratio and free volume concentration.The experimental results also show that alloying technology is an effective method to improve the GFA and mechanical properties of Ti-Zr-Be glassy alloy.展开更多
N doped TiO2 (N-TiO2) coatings were obtained by oxidation of titanium nitride coatings, which were pre pared by the plasma surface alloying technique on stainless steel (SS). The microstructure of N-TiO2 coatings ...N doped TiO2 (N-TiO2) coatings were obtained by oxidation of titanium nitride coatings, which were pre pared by the plasma surface alloying technique on stainless steel (SS). The microstructure of N-TiO2 coatings was characterized by X-ray diffraction (XRD), glow discharge optical emission spectrometry (GDOES), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM), respectively. Ball-on-disc sliding wear was applied to test and compare the tribological behaviors of the coatings and substrate. XRD patterns showed that anatase type TiO2 existed in the coatings after oxidation. GDOES showed that the resultant coatings had a layered structure, comprising of N-TiO2 layer at the top and a diffusion-type interface. Such a hybrid coatings system showed good adhesion with the substrate. According to XPS, residual N atoms partially occupied O atom sites in the TiO2 lattice. Uniform, continuous and compact coatings were observed by SEM images of coatings after oxidation. Under a load of 7.6 N, the coefficient of friction was in the range of 0.27--0.38 for the N-TiO2/Al2O3 systems and the wear rate of the coatings was only one-fourteenth of that for untreated 316L SS. N-TiO2 coatings displayed much better wear resistance and antifrietion performance than SS substrate.展开更多
Zr and its alloys have excellent mechanical properties as new structural material,but in specific application environment,its corrosion resistance still needs to be further explored.In this work,double glow plasma sur...Zr and its alloys have excellent mechanical properties as new structural material,but in specific application environment,its corrosion resistance still needs to be further explored.In this work,double glow plasma surface alloying technique was used for copperizing on pure Zr surface.Besides,X-ray diffraction(XRD),scanning electron microscope(SEM) and energy dispersion spectrum(EDS) were employed to characterize the samples.Furthermore,research was also conducted on the polarization curve of the samples in different solutions.Copperizing on surface can improve corrosion resistance of pure Zr in 3.5 % Na Cl and 0.5 moláL-1Na OH solutions.Especially in 0.5 moláL-1Na OH solution,the corrosion resistance can achieve significant improvement.However,copperizing has no influence on the improvement of corrosion resistance of pure Zr in 0.5 moláL-1H2SO4 solution.The results may provide new insight into way for improving the corrosion property of zirconium alloys.展开更多
Northern Anhui was an important region for diverse bronze culture convergence and extensive metal resource circulation in the Pre-Qin Period.In this paper,metallographic microstructure analysis,chemical composition an...Northern Anhui was an important region for diverse bronze culture convergence and extensive metal resource circulation in the Pre-Qin Period.In this paper,metallographic microstructure analysis,chemical composition analysis,and lead isotope ratio analysis were conducted on 12 samples of 6 Warring States Period(476–221 BCE)bronze vessels excavated from Chutai Cemetery M1,Fuyang,Anhui Province,revealing the integrated application of diversified manufacturing processes,such as casting,forging,cold working,and welding and multiple metal minerals.The analytical results showed that 2 Ding vessels(鼎)were made by casting,and 2 He vessels(盒)and 2 Dui vessels(敦)were made by forging followed by cold working.These two types of bronze vessels made by different manufacturing processes have significantly distinct alloy ratios and mineral sources,among which the Cu and Sn contents of the 2 cast bronze vessels are lower and the Pb content is higher,while the Cu and Sn contents of the 4 forged bronze vessels are higher and the Pb content is lower.The lead minerals of the two types of bronze vessels might come from Western Henan and the middle and lower reaches of the Yangtze River,respectively.In addition,the 3 pieces of solder used to weld bronze vessels were all made of pure Sn,their metal minerals should come from the densely distributed area of tin ore in Southern China,and Sn solders were mainly discovered in the Chu culture area during the Eastern Zhou Period.展开更多
基金supported by National Steel Union Foundation of China (No.50374050)
文摘Electron density (Ne) in a glow discharge plasma for the surface alloying technique is diagnosed by optical emission spectrometry (OES). With CH4 as the feeding gas, Ne is obtained by comparing the Hβ spectrum according to the Stark broadening effect. It is noticed that Ne varies with the working pressures (30 Pa to 70 Pa) and cathode voltages (500 V to 1000 V), respectively. Due to an abnormal glow discharge, Ne is between 1. 71 × 10^15 /cm^3 to 6.64 × 10^15 /cm^3 and increases rapidly with working gas pressures and cathode voltages. The results show that OES is a useful method to measure the plasma parameters in a surface alloying glow discharge plasma.
基金Project supported by the National Natural Science Foundation of China(Grant No.51601122)the 2019–2020 Intergovernmental Cooperation Projects in Science and Technology of the Ministry of Science and Technology,China(Grant No.CB02-03)+3 种基金the Science and Technology Major Project of Shanxi Province,China(Grant No.20181102013)the“331 Project”Engineering Research Center of Shanxi Province,China(Grant No.PT201801)the China Postdoctoral Science Foundation(Grant No.2017M620574)the Fund from the State Key Laboratory of Advanced Metal Materials,China(Grant No.2019-ZD02).
文摘TiAl-based alloys have received extensive attention recently due to their excellent properties. However, the weak oxidation resistance at temperatures higher than 800℃ can limit their further high-temperature structural applications.To improve the oxidation resistance of a high-Nb-content γ-TiAl alloy(Ti-45 Al-8.5 Nb, in units of at.%), a chromium(Cr)coating is prepared by using the plasma surface alloying technique, separately, at 800℃ and 1000℃. The x-ray diffraction(XRD) patterns reveal that an oxide surface layer consisting of Cr2O3, Al2O3, and TiO2 is produced on the Cr-coated Nb containing γ-TiAl substrates during the initial oxidation. However, the Cr2O3 is dominated in the oxide surface layer after being isothermally oxidized for 300 h. The oxidation kinetic curves are composed of a parabolic law stage(≤ 90 h) and a biquadratic law stage(≥ 90 h), fit by weight–gain curves. Due to diffusion in the fabrication process and oxidation process,the Cr-coated specimens have an adhesion force after being isothermally oxidized, specifically 69 N for a specimen after oxidation for 300 h. These results demonstrate that the Cr coating enhances the oxidation resistance and adhesion of a Ti-45 Al-8.5 Nb alloy, which may provide a new feasible scheme for designing oxidation protection layers.
基金Funded by the ‘863" Program(2007AA03Z521)the National Natural Science Foundation of China (No.50771070)the Foundation for Re-turned Overseas Scholars of department of human research and social security of Shanxi Province
文摘The Mo surface modified layer on titanium was obtained by the plasma surface alloying technique. The structure and composition of the Mo modified titanium were investigated by X-ray diffraction (XRD) and glow discharge optical emission spectroscopy (GDOES). The Mo modified layer contains Mo coating on subsurface and diffusion layers between the subsurface and substrate. The Xray diffraction analysis of the Mo modified titanium reveals that the outmost surface of the Mo modified titanium is composed of pure Mo. The electrochemical corrosion performance of the Mo modified titanium in saliva was investigated and compared with that of titanium. The chemical corrosion performance of the Mo modified titanium in 37 ℃ saliva was investigated and compared with that of titanium. The experimental results indicated that self-corroding electric potentials and corrosion-rate of the Mo modified titanium were higher than that of titanium in saliva. Corrosion-rate of the Mo modified titanium was lower than that of titanium in 37 ℃ saliva.
基金supported by the National Basic Research Program of China(Grant No.2007CB613905)the National Natural Science Foundation of China(Grant Nos.51271095,51101090 and 50971073)
文摘A series of Ti-Zr-Be-Fe bulk metallic glasses(BMGs)with good glass-forming ability(GFA)and high specific strength have been developed.With different alloying routes and content of Fe,it is found that these alloys exhibit different GFA and mechanical properties.The effects of Fe addition on the GFA and mechanical properties of Ti-Zr-Be alloy are systemically investigated.The possible mechanisms for the improvement or damage to the GFA by addition of Fe can be interpreted in view of the mixing enthalpy,atomic size differences and electronegativity differences of the alloys,while the mechanical properties strongly depend on the Poisson’s ratio and free volume concentration.The experimental results also show that alloying technology is an effective method to improve the GFA and mechanical properties of Ti-Zr-Be glassy alloy.
基金Item Sponsored by National Natural Science Foundation of China(50771070)Project Innovation of Graduate Students of Shanxi Province of China(20093038)
文摘N doped TiO2 (N-TiO2) coatings were obtained by oxidation of titanium nitride coatings, which were pre pared by the plasma surface alloying technique on stainless steel (SS). The microstructure of N-TiO2 coatings was characterized by X-ray diffraction (XRD), glow discharge optical emission spectrometry (GDOES), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM), respectively. Ball-on-disc sliding wear was applied to test and compare the tribological behaviors of the coatings and substrate. XRD patterns showed that anatase type TiO2 existed in the coatings after oxidation. GDOES showed that the resultant coatings had a layered structure, comprising of N-TiO2 layer at the top and a diffusion-type interface. Such a hybrid coatings system showed good adhesion with the substrate. According to XPS, residual N atoms partially occupied O atom sites in the TiO2 lattice. Uniform, continuous and compact coatings were observed by SEM images of coatings after oxidation. Under a load of 7.6 N, the coefficient of friction was in the range of 0.27--0.38 for the N-TiO2/Al2O3 systems and the wear rate of the coatings was only one-fourteenth of that for untreated 316L SS. N-TiO2 coatings displayed much better wear resistance and antifrietion performance than SS substrate.
基金financially supported by the National Basic Research Program of China (No.2013CB733000)the National Natural Science Foundation of China (Nos.51271161,51271162 and 51434008)
文摘Zr and its alloys have excellent mechanical properties as new structural material,but in specific application environment,its corrosion resistance still needs to be further explored.In this work,double glow plasma surface alloying technique was used for copperizing on pure Zr surface.Besides,X-ray diffraction(XRD),scanning electron microscope(SEM) and energy dispersion spectrum(EDS) were employed to characterize the samples.Furthermore,research was also conducted on the polarization curve of the samples in different solutions.Copperizing on surface can improve corrosion resistance of pure Zr in 3.5 % Na Cl and 0.5 moláL-1Na OH solutions.Especially in 0.5 moláL-1Na OH solution,the corrosion resistance can achieve significant improvement.However,copperizing has no influence on the improvement of corrosion resistance of pure Zr in 0.5 moláL-1H2SO4 solution.The results may provide new insight into way for improving the corrosion property of zirconium alloys.
基金supported by the National Natural Science Foundation of China(Grant No.41303080)the Youth Promotion Association of the Chinese Academy of Sciences(Grant No.2018499)the National Key R&D Program of China(Grant No.2022YFF0903700)。
文摘Northern Anhui was an important region for diverse bronze culture convergence and extensive metal resource circulation in the Pre-Qin Period.In this paper,metallographic microstructure analysis,chemical composition analysis,and lead isotope ratio analysis were conducted on 12 samples of 6 Warring States Period(476–221 BCE)bronze vessels excavated from Chutai Cemetery M1,Fuyang,Anhui Province,revealing the integrated application of diversified manufacturing processes,such as casting,forging,cold working,and welding and multiple metal minerals.The analytical results showed that 2 Ding vessels(鼎)were made by casting,and 2 He vessels(盒)and 2 Dui vessels(敦)were made by forging followed by cold working.These two types of bronze vessels made by different manufacturing processes have significantly distinct alloy ratios and mineral sources,among which the Cu and Sn contents of the 2 cast bronze vessels are lower and the Pb content is higher,while the Cu and Sn contents of the 4 forged bronze vessels are higher and the Pb content is lower.The lead minerals of the two types of bronze vessels might come from Western Henan and the middle and lower reaches of the Yangtze River,respectively.In addition,the 3 pieces of solder used to weld bronze vessels were all made of pure Sn,their metal minerals should come from the densely distributed area of tin ore in Southern China,and Sn solders were mainly discovered in the Chu culture area during the Eastern Zhou Period.