Films from congo red (CR) alternated with poly(allylamine hydrochloride), PAH, were prepared by layer-by-layer and alternative spray techniques. In order to investigate the change of roughness induced by laser light i...Films from congo red (CR) alternated with poly(allylamine hydrochloride), PAH, were prepared by layer-by-layer and alternative spray techniques. In order to investigate the change of roughness induced by laser light irradiation (532 nm), both kinds of films were characterized by using UV-visible spectroscopy and atomic force microscopy (AFM). At dif- ferent irradiation times, layer-by-layer, LbL, films showed small changes in the roughness and irregular behavior, whereas spray films exhibited higher and a regular decreasing of roughness with increasing irradiation time. The higher roughness of spray films as compared with the LbL ones was attributed to different formation mechanisms of the films. The decreasing of the roughness as a function of the irradiation time (exhibited by the spray films) was associated to surface relaxation due to the interplay between photoisomerization of congo red dye and the heating of the sample during the laser light irradiation. The results suggested that the alternative spray technique is the best choose to control of roughness of the films by using light irradiation.展开更多
Three polymer-amphiphile complexes were prepared by combining poly(allylamine hydrochloride)(PAH) with the potassium salt of mono-,di-,and trisubstituted benzoic acid dendrons(4-octyloxybenzoic acid,3,5-dioctylox...Three polymer-amphiphile complexes were prepared by combining poly(allylamine hydrochloride)(PAH) with the potassium salt of mono-,di-,and trisubstituted benzoic acid dendrons(4-octyloxybenzoic acid,3,5-dioctyloxybenzoic acid,and 3,4,5- trioctyloxybenzoic acid).The solid structure and properties were monitored with FT-IR,XRD,TG,DSC,and polarized optical microscope(POM).Difference in the tail chain number of the dendritic amphiphile induced two different mesomorphous structures: lamella for the mono-,disubstituted dendron containing complexes and hexagonal column for the trisubstituted dendron containing complexes.These corresponded to the ionic thermotropic liquid crystal SmA andΦ_h phases,respectively.This finding is significant for design of functional nanostructures based on the ionic complexation of polymers and amphiphiles.展开更多
A post-photochemical cross-linking strategy was successfully demonstrated to enhance the stability of polyelectrolyte poly(allylamine hydrochloride)(PAH)/poly(vinylsulfonic acid sodium salt)(PVS) multilayers. ...A post-photochemical cross-linking strategy was successfully demonstrated to enhance the stability of polyelectrolyte poly(allylamine hydrochloride)(PAH)/poly(vinylsulfonic acid sodium salt)(PVS) multilayers. Con- ventional polyelectrolyte multilayers of PAH/PVS are usually fabricated through electrostatic layer-by-layer(LbL) assembly, resulting in poor stability, especially in basic solutions, which leads to the urgent demand for converting weak electrostatic interactions into covalent bonds to enhance the stability of the multilayers. This stability problem has been ultimately addressed by post-infiltrating a photosensitive cross-linking agent, 4,4'-diazostilbene-2,2'- disulfonie acid disodium salt(DAS), into the LbL assembled films to initiate the photochemical reaction to cross-link the multilayers. The obviously improved stability of the photo-cross-linked multilayers was demonstrated through experiments with basic solution treatments. Compared to the complete decomposition of uncross-linked multilayers in basic solution, over 74.4% of the covalently cross-linked multilayers were retained under the same conditions, even after a longer duration of basic solution treatment.展开更多
基金This work was supported by CNPq and CAPES(Brazil).R.J.da Silva and R.R.G.Maciel thank Capes(nbioNet)and CNPq for the scholarship.
文摘Films from congo red (CR) alternated with poly(allylamine hydrochloride), PAH, were prepared by layer-by-layer and alternative spray techniques. In order to investigate the change of roughness induced by laser light irradiation (532 nm), both kinds of films were characterized by using UV-visible spectroscopy and atomic force microscopy (AFM). At dif- ferent irradiation times, layer-by-layer, LbL, films showed small changes in the roughness and irregular behavior, whereas spray films exhibited higher and a regular decreasing of roughness with increasing irradiation time. The higher roughness of spray films as compared with the LbL ones was attributed to different formation mechanisms of the films. The decreasing of the roughness as a function of the irradiation time (exhibited by the spray films) was associated to surface relaxation due to the interplay between photoisomerization of congo red dye and the heating of the sample during the laser light irradiation. The results suggested that the alternative spray technique is the best choose to control of roughness of the films by using light irradiation.
基金the financial support from the NSFC(No50873037)the PCSIRT(NoIRT0827)+2 种基金the Fundamental Research Funds for the Central Universities(No2009ZM0017)China Postdoctoral Science Foundation(No20100470908)the NSF of Guangdong Province(No10451064101005118) is gratefully acknowledged
文摘Three polymer-amphiphile complexes were prepared by combining poly(allylamine hydrochloride)(PAH) with the potassium salt of mono-,di-,and trisubstituted benzoic acid dendrons(4-octyloxybenzoic acid,3,5-dioctyloxybenzoic acid,and 3,4,5- trioctyloxybenzoic acid).The solid structure and properties were monitored with FT-IR,XRD,TG,DSC,and polarized optical microscope(POM).Difference in the tail chain number of the dendritic amphiphile induced two different mesomorphous structures: lamella for the mono-,disubstituted dendron containing complexes and hexagonal column for the trisubstituted dendron containing complexes.These corresponded to the ionic thermotropic liquid crystal SmA andΦ_h phases,respectively.This finding is significant for design of functional nanostructures based on the ionic complexation of polymers and amphiphiles.
基金Supported by the National Natural Science Foundation of China(Nos.51372125, 51302010) and the Specialized Research Fund for the Doctoral Program of Higher Education of China(No.20130010120009).
文摘A post-photochemical cross-linking strategy was successfully demonstrated to enhance the stability of polyelectrolyte poly(allylamine hydrochloride)(PAH)/poly(vinylsulfonic acid sodium salt)(PVS) multilayers. Con- ventional polyelectrolyte multilayers of PAH/PVS are usually fabricated through electrostatic layer-by-layer(LbL) assembly, resulting in poor stability, especially in basic solutions, which leads to the urgent demand for converting weak electrostatic interactions into covalent bonds to enhance the stability of the multilayers. This stability problem has been ultimately addressed by post-infiltrating a photosensitive cross-linking agent, 4,4'-diazostilbene-2,2'- disulfonie acid disodium salt(DAS), into the LbL assembled films to initiate the photochemical reaction to cross-link the multilayers. The obviously improved stability of the photo-cross-linked multilayers was demonstrated through experiments with basic solution treatments. Compared to the complete decomposition of uncross-linked multilayers in basic solution, over 74.4% of the covalently cross-linked multilayers were retained under the same conditions, even after a longer duration of basic solution treatment.