A series of new nickel(Ⅱ)complexes with 2-aminomethylpyridine ligands,(2-PyCH_2NHAr)_2NiBr_2(Ar=2,6- dimethylphenyl 2a;2,6-diisopropylphenyl 2b,2,6-difluorophenyl 2c),have been synthesized and used as catalyst precur...A series of new nickel(Ⅱ)complexes with 2-aminomethylpyridine ligands,(2-PyCH_2NHAr)_2NiBr_2(Ar=2,6- dimethylphenyl 2a;2,6-diisopropylphenyl 2b,2,6-difluorophenyl 2c),have been synthesized and used as catalyst precursors for ethylene polymerization in the presence of methylaluminoxane(MAO).The catalysts containing ortho-alkyl-substituents afford high molecular weight branched polyethylenes as well as a certain amount of oligomers.Enhancing the steric bulk of the alkyl substituent of the catalyst resulted in...展开更多
An unsymmetric 2,6-bis(imino)pyridine iron(II) complex 1' was synthesized. The relationship between catalyststructure and its activity in ethylene polymerization is discussed. The kinetic behavior of ethylene poly...An unsymmetric 2,6-bis(imino)pyridine iron(II) complex 1' was synthesized. The relationship between catalyststructure and its activity in ethylene polymerization is discussed. The kinetic behavior of ethylene polymerization and theeffects of polymerization conditions such as temperature, aluminum/iron molar ratio on the activity of catalyst and thecharacteristics of polyethylene were reported. The unsymmetric catalyst 1' has a good catalytic performance of 3.47×10~6 gPE·mol^(-1)·Fe·h^(-1) at 40℃ with aluminum/iron molar ratio = 2500. A dependence of catalyst activity on themethylaluminoxane (MAO) concentration and reaction temperature was found. The molecular weight (MW) of polyethylenewith broad dispersity is about 10~4-10~5 g/mol. The melting temperature and branching of polyethylenes vary with changingreaction temperature and aluminum/iron molar ratio.展开更多
The catalytic property of propylene dimerization by several nickel (Ⅱ), cobalt (Ⅱ) complexes containing N-P bidentate ligands was studied in combination with organoaluminum co-catalysts. The effects of the type of a...The catalytic property of propylene dimerization by several nickel (Ⅱ), cobalt (Ⅱ) complexes containing N-P bidentate ligands was studied in combination with organoaluminum co-catalysts. The effects of the type of aluminum co-catalysts and its relative amount, the nature of precursors in terms of ligand backbone and metal center were investigated. The results indicated that precursor I (N,N-dimethyl-2-(diphenylphosphino)aniline nickel (Ⅱ) dichloride) exhibited high activity in propylene dimerization in the presence of the strong Lewis acid Et3Al2Cl3, whereas low productivity by its cobalt analogues was observed under identical reaction conditions.展开更多
A new copper(Ⅱ) complex of a non‐symmetric Schiff base, [CuII(saldien)(H2O)]+(1), has been synthesized and characterized by elemental analysis and several other spectroscopic methods (Hsaldien = N‐(salicylidene)die...A new copper(Ⅱ) complex of a non‐symmetric Schiff base, [CuII(saldien)(H2O)]+(1), has been synthesized and characterized by elemental analysis and several other spectroscopic methods (Hsaldien = N‐(salicylidene)diethylenetriamine). The crystal structure of 1 has also been determined by X‐ray crystallography. The geometry of the complex cation in 1 was found to be distorted square pyramidal with the mononegative Schiff base coordinating to the copper in a tetradentate mode via the O,N,N', and N''‐donor atoms. The remaining coordination site was occupied by the O atom of a H2O molecule in the axial position. The catalytic potential of 1 was tested in the oxidation reactions of cyclooctene and cyclohexene with aqueous 30% H2O2/NaHCO3 in acetonitrile. These reactions proceeded smoothly to give the corresponding epoxides with selectivity levels greater than 99%. This catalytic system also showed high levels of activity and selectivity towards the oxidation of cyclohexane (i.e., cyclohexanol 37% and cyclohexanone 54%) in comparison with most of the other Cu‐based systems reported in the literature.展开更多
基金the National Natural Science Foundation of China(Nos.20674097,20734004)the Ministry of Education of China(Foundation for Ph.D.Training).
文摘A series of new nickel(Ⅱ)complexes with 2-aminomethylpyridine ligands,(2-PyCH_2NHAr)_2NiBr_2(Ar=2,6- dimethylphenyl 2a;2,6-diisopropylphenyl 2b,2,6-difluorophenyl 2c),have been synthesized and used as catalyst precursors for ethylene polymerization in the presence of methylaluminoxane(MAO).The catalysts containing ortho-alkyl-substituents afford high molecular weight branched polyethylenes as well as a certain amount of oligomers.Enhancing the steric bulk of the alkyl substituent of the catalyst resulted in...
基金This work was financially supported by the National Natural Science Foundation of China (No. 29734141, 50103012) Core Research for Engineering Innovation KGCX2-203, the Foundation of "One Hundred Talents" program for W-H Sun, Chinese Academy of Sciences
文摘An unsymmetric 2,6-bis(imino)pyridine iron(II) complex 1' was synthesized. The relationship between catalyststructure and its activity in ethylene polymerization is discussed. The kinetic behavior of ethylene polymerization and theeffects of polymerization conditions such as temperature, aluminum/iron molar ratio on the activity of catalyst and thecharacteristics of polyethylene were reported. The unsymmetric catalyst 1' has a good catalytic performance of 3.47×10~6 gPE·mol^(-1)·Fe·h^(-1) at 40℃ with aluminum/iron molar ratio = 2500. A dependence of catalyst activity on themethylaluminoxane (MAO) concentration and reaction temperature was found. The molecular weight (MW) of polyethylenewith broad dispersity is about 10~4-10~5 g/mol. The melting temperature and branching of polyethylenes vary with changingreaction temperature and aluminum/iron molar ratio.
文摘The catalytic property of propylene dimerization by several nickel (Ⅱ), cobalt (Ⅱ) complexes containing N-P bidentate ligands was studied in combination with organoaluminum co-catalysts. The effects of the type of aluminum co-catalysts and its relative amount, the nature of precursors in terms of ligand backbone and metal center were investigated. The results indicated that precursor I (N,N-dimethyl-2-(diphenylphosphino)aniline nickel (Ⅱ) dichloride) exhibited high activity in propylene dimerization in the presence of the strong Lewis acid Et3Al2Cl3, whereas low productivity by its cobalt analogues was observed under identical reaction conditions.
基金the University of Zanjan for providing financial support for this study
文摘A new copper(Ⅱ) complex of a non‐symmetric Schiff base, [CuII(saldien)(H2O)]+(1), has been synthesized and characterized by elemental analysis and several other spectroscopic methods (Hsaldien = N‐(salicylidene)diethylenetriamine). The crystal structure of 1 has also been determined by X‐ray crystallography. The geometry of the complex cation in 1 was found to be distorted square pyramidal with the mononegative Schiff base coordinating to the copper in a tetradentate mode via the O,N,N', and N''‐donor atoms. The remaining coordination site was occupied by the O atom of a H2O molecule in the axial position. The catalytic potential of 1 was tested in the oxidation reactions of cyclooctene and cyclohexene with aqueous 30% H2O2/NaHCO3 in acetonitrile. These reactions proceeded smoothly to give the corresponding epoxides with selectivity levels greater than 99%. This catalytic system also showed high levels of activity and selectivity towards the oxidation of cyclohexane (i.e., cyclohexanol 37% and cyclohexanone 54%) in comparison with most of the other Cu‐based systems reported in the literature.