Let Ω be a G-invariant convex domain in RN including 0, where G is a Coxeter group associated with reduced root system R. We consider functions f defined in Ω which are Dunkl polyharmonic, i.e. (△h)nf =0 for some i...Let Ω be a G-invariant convex domain in RN including 0, where G is a Coxeter group associated with reduced root system R. We consider functions f defined in Ω which are Dunkl polyharmonic, i.e. (△h)nf =0 for some integer n. Here △h=∑j=1N Dj2 is the Dunkl Laplacian, and Dj is the Dunkl operator attached to the Coxeter group G, where kv is a multiplicity function on R and σv is the reflection with respect to the root v. We prove that any Dunkl polyharmonic function f has a decomposition of the form f(x)=f0(x)+|x|2f1(x)+…+|x|2(n-1)fn-1(x),(?)x∈Ω, where fj are Dunkl harmonic functions, i.e. △hfj = 0. This generalizes the classical Almansi theorem for polyharmonic functions as well as the Fischer decomposition.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.10471134).
文摘Let Ω be a G-invariant convex domain in RN including 0, where G is a Coxeter group associated with reduced root system R. We consider functions f defined in Ω which are Dunkl polyharmonic, i.e. (△h)nf =0 for some integer n. Here △h=∑j=1N Dj2 is the Dunkl Laplacian, and Dj is the Dunkl operator attached to the Coxeter group G, where kv is a multiplicity function on R and σv is the reflection with respect to the root v. We prove that any Dunkl polyharmonic function f has a decomposition of the form f(x)=f0(x)+|x|2f1(x)+…+|x|2(n-1)fn-1(x),(?)x∈Ω, where fj are Dunkl harmonic functions, i.e. △hfj = 0. This generalizes the classical Almansi theorem for polyharmonic functions as well as the Fischer decomposition.