Metals obtain optimum conditions of metallurgical and physical properties through a heat treatment. Brass is one of the copper alloys which has many applications in everyday life and in the industry. Brass is one of t...Metals obtain optimum conditions of metallurgical and physical properties through a heat treatment. Brass is one of the copper alloys which has many applications in everyday life and in the industry. Brass is one of the copper alloys which has many applications in everyday life and the industry. In this work, the influence of the precipitation heat treatment temperature on the metallurgical microstructure, structure, thermal properties, and microhardness of an alpha brass is analyzed. Samples were heat treated by precipitation for 2 h at 300°C, 400°C, 500°C, 600°C, and 700°C. The best mechanical properties were found at 500°C of precipitation heat treatment temperature. Specimens were characterized by scanning electron microscopy, X-ray diffraction, Vickers microhardness, photothermal radiometry, and photoacoustic to study the thermal diffusivity and conductivity, as well as the heat capacity. The inverse of the full width at the half maximum analysis showed that the crystallinity decreased as the precipitation heat treatment temperature increased. Metallurgical microstructure and microhardness were correlated to the precipitation heat treatment temperatures to determine the effect on the metallurgical and mechanical properties, as well as the effect on the thermal properties of alpha brass.展开更多
Cu-Zn alloy (Brass) is widely used as an industrial material because of its excellent characteristics such as high corrosion resistance, non-magnetism and good forging ability. This paper evaluates the mechanical and ...Cu-Zn alloy (Brass) is widely used as an industrial material because of its excellent characteristics such as high corrosion resistance, non-magnetism and good forging ability. This paper evaluates the mechanical and microstructure properties of α-brass alloy gotten from scrap copper and zinc metal, and compares the properties with normal α-brass billets. Five different compositions of the α-brass alloy (Cu-5%Zn, Cu-10%Zn, Cu-15%Zn, Cu-20%Zn, Cu-30%Zn) were produced from scraps of copper wire and zinc batteries casing respectively by method of sand casting. The parts of the cast rods were machined to a specification of 60 mm × 100 mm × 300 mm on a lathe to obtain tensile test specimens. After homogenization annealing, the samples were heated in an electric furnace at 500℃ for 3 hours. The samples were etched with ferric chloride solution for 20 seconds and sent for metallographic examination. The result of the hardness test shows variation in hardness of the cast Cu-Zn alloys with increasing zinc content. The ductility and elongation of the α-brass decrease with increasing zinc content. The colouration of the α-brass changed from red to yellow as the zinc content increases. In conclusion, hard brass can be obtained from recycled Cu and Zn as compared to normal brass billets.展开更多
文摘Metals obtain optimum conditions of metallurgical and physical properties through a heat treatment. Brass is one of the copper alloys which has many applications in everyday life and in the industry. Brass is one of the copper alloys which has many applications in everyday life and the industry. In this work, the influence of the precipitation heat treatment temperature on the metallurgical microstructure, structure, thermal properties, and microhardness of an alpha brass is analyzed. Samples were heat treated by precipitation for 2 h at 300°C, 400°C, 500°C, 600°C, and 700°C. The best mechanical properties were found at 500°C of precipitation heat treatment temperature. Specimens were characterized by scanning electron microscopy, X-ray diffraction, Vickers microhardness, photothermal radiometry, and photoacoustic to study the thermal diffusivity and conductivity, as well as the heat capacity. The inverse of the full width at the half maximum analysis showed that the crystallinity decreased as the precipitation heat treatment temperature increased. Metallurgical microstructure and microhardness were correlated to the precipitation heat treatment temperatures to determine the effect on the metallurgical and mechanical properties, as well as the effect on the thermal properties of alpha brass.
文摘Cu-Zn alloy (Brass) is widely used as an industrial material because of its excellent characteristics such as high corrosion resistance, non-magnetism and good forging ability. This paper evaluates the mechanical and microstructure properties of α-brass alloy gotten from scrap copper and zinc metal, and compares the properties with normal α-brass billets. Five different compositions of the α-brass alloy (Cu-5%Zn, Cu-10%Zn, Cu-15%Zn, Cu-20%Zn, Cu-30%Zn) were produced from scraps of copper wire and zinc batteries casing respectively by method of sand casting. The parts of the cast rods were machined to a specification of 60 mm × 100 mm × 300 mm on a lathe to obtain tensile test specimens. After homogenization annealing, the samples were heated in an electric furnace at 500℃ for 3 hours. The samples were etched with ferric chloride solution for 20 seconds and sent for metallographic examination. The result of the hardness test shows variation in hardness of the cast Cu-Zn alloys with increasing zinc content. The ductility and elongation of the α-brass decrease with increasing zinc content. The colouration of the α-brass changed from red to yellow as the zinc content increases. In conclusion, hard brass can be obtained from recycled Cu and Zn as compared to normal brass billets.