To accomplish their functions, proteins have to achieve different conformations accompanied by conformational transitions. However, the relationship between the preference of amino acids and the stability of the secon...To accomplish their functions, proteins have to achieve different conformations accompanied by conformational transitions. However, the relationship between the preference of amino acids and the stability of the secondary structure is still unclear. Here we perform molecular simulations on a series of helical structures. Our data show that the dissociation energy of the helical structure is related to the preference of amino acids, and the electrostatic repulsion of the residue i and i + 3/4 with the same sign of charge destabilizes the alpha helix.展开更多
Alpha helix is a common type of secondary structure in the protein structure that consists of repeating helical turns. Patterns in the protein sequences that cause this repetitive pattern in the structure have long be...Alpha helix is a common type of secondary structure in the protein structure that consists of repeating helical turns. Patterns in the protein sequences that cause this repetitive pattern in the structure have long been sought. We used the discrete Fourier transform (DFT) to detect the periodicity signals correlated to the helical structure. We studied the distribution of multiple properties along the protein sequence, and found a property that showed strong periodicity correlated with the helical structure. Using a short-time Fourier transform (STFT) method, we investigated the amplitude of the periodical signals at each amino acid position. The results show that residues in the helix structure tend to display higher amplitudes than residues outside of the helices. This tendency is dramatically strengthen when sequence profiles obtained from multiple alignment were used to detect the periodicity. A simple method that predicted helices based on the amplitude yielded overall true positive rate (TPR) of 63%, 49% sensitivity, 72% specificity, and 0.22 Matthews Correlation Coefficient (MCC). The performance seemed to depend on the length of helices that the proteins had.展开更多
Background:This study was conducted to determine protein molecular structure profiles and quantify the relationship between protein structural features and protein metabolism and bioavailability of blend pel eted prod...Background:This study was conducted to determine protein molecular structure profiles and quantify the relationship between protein structural features and protein metabolism and bioavailability of blend pel eted products(BPP)based on co-products(canola or carinata)from processing with different proportions of pulse pea screenings and lignosulfonate chemical compound.Method:The protein molecular structures were determined using the non-invasive advanced vibrational molecular spectroscopy(ATR-FT/IR)in terms of chemical structure and biofunctional groups of amides(ⅠandⅡ),α-helix andβ-sheet.Results:The results showed that increasing the level of the co-products in BPP significantly increased the spectral intensity of the amide area and amide height.The products exhibited similar protein secondaryα-helix toβ-sheet ratio.The protein molecular structure profiles(amidesⅠandⅡ,α-helix toβ-sheet)were highly associated with protein degradation kinetics and intestinal digestion.In conclusion,the non-invasive vibrational molecular spectroscopy(ATR-FT/IR)could be used to detect inherent structural make-up characteristics in BPP.Conclusion:The molecular structural features related to protein biopolymer were highly associated with protein utilization and metabolism.展开更多
目的:探讨T辅助细胞亚群Th1/Th2和Treg在非酒精性脂肪性肝病(nonalcoholic fatty liver disease,NAFLD)发病机制中的意义.方法:SD大鼠正常喂养1wk后,随机分为正常组(n=20)和高脂饮食组(n=20).正常组大鼠以普通饲料喂养,高脂饮食组以高...目的:探讨T辅助细胞亚群Th1/Th2和Treg在非酒精性脂肪性肝病(nonalcoholic fatty liver disease,NAFLD)发病机制中的意义.方法:SD大鼠正常喂养1wk后,随机分为正常组(n=20)和高脂饮食组(n=20).正常组大鼠以普通饲料喂养,高脂饮食组以高脂饲料喂养.实验第8、16周分批处死大鼠.观察肝组织的病理改变,荧光定量PCR方法检测肝脏TNF-a、IFN-γ、IL-4和Foxp3的基因表达.结果:高脂饮食8wk大鼠肝细胞脂肪变明显,无明显炎症改变,IFN-γ、IL-4在肝脏的基因表达与正常组比较无明显变化,TNF-α稍升高,但无统计学意义,Foxp3 mRNA的表达比正常组明显降低(ct值:26.12±0.69 vs 24.22±0.62,P<0.05).高脂饮食16wk大鼠脂肪肝明显,炎症明显,IFN-γ和TNF-α基因表达均显著升高(ct值:24.52±0.87 vs 29.94±1.44,24.31±1.13 vs 28.88±1.95,均P<0.05),IL-4与正常组相比较无明显变化,Foxp3基因表达较正常组和高脂饮食8wk时均显著降低(ct值:32.57±1.54 vs 24.29±1.08,26.12±0.69,P<0.05).结论:高脂饮食大鼠肝脏Foxp3和Treg表达减少可能是高脂饮食NAFLD发生发展的重要因素.IFN-γ和TNF-α的联合作用加重了肝脏的炎症损伤.展开更多
Antimicrobial peptides are promising therapeutic agents in view of increasing resistance to conventional antibiotics. Antimicrobial peptides usually fold in α-helical, β-sheet, and extended/random-coil structures. T...Antimicrobial peptides are promising therapeutic agents in view of increasing resistance to conventional antibiotics. Antimicrobial peptides usually fold in α-helical, β-sheet, and extended/random-coil structures. The α-helical antimicrobial peptides are often unstructured in aqueous solution but become structured on bacterial membrane. The α-helical structure allows the partitioning into bacterial membrane. Therefore it is important to understand the mechanism of unfolding and refolding of α-helical structure in antimicrobial peptides. It is not very easy to obverse and study the process of unfolding and refolding of α-helical antimicrobial peptides because of their rapidity. Therefore, molecular simulation provides a way to observe and explain this phenomenon. Plantaricin A is a 26 amino-acid antimicrobial pheromone peptide and can spontaneously unfold and refold under physiological condition. This study demonstrated the unfolding and refolding of plantaricin A by means of molecular simulation, and its mechanism was discussed with its implication to the Levinthal paradox.展开更多
The 3-D structure of the β-adrenergic receptor with a molecular weight of 55,000 daltons is available from crystallographic data. Within one of the seven transmembrane ion channel helices in the β2-receptor, one loo...The 3-D structure of the β-adrenergic receptor with a molecular weight of 55,000 daltons is available from crystallographic data. Within one of the seven transmembrane ion channel helices in the β2-receptor, one loop of a helix ACADL has previously been proposed as the site that explains β2 activity (fights acute bronchitis) whereas ASADL in the β1-receptor at the corresponding site explains β1-activity (cardiac stimulation). The α-agonist responsible for this selective reaction is only 0.5% of the receptor molecular weight, and only 1.5% of the weight of the trans-membrane portion of the receptor. The understanding of the mechanism by which a small molecule on binding to a site on one single loop of a helix produces a specific agonist activity on an entire transmembrane ion channel is uncertain. A model of an α-helix is presented in which of pitch occurs at angles both smaller and larger than 180° n. Consequently, atomic coordinates in a peptide backbone α-helix match the data points of individual atom (and atom types) in the backbone. More precisely, eleven atoms in peptide backbone routinely equal one loop of a helix, instead of eleven amino acid residues equaling three loops of a helix;therefore, an α-helix can begin (or end) at any specific atom in a peptide backbone, not just at any specific amino acid. Wavefront Topology System and Finite Element Methods calculate this specific helical shape based only upon circumference, pitch, and phase. Only external forces which specifically affect circumference, pitch and/or phase (e.g. from agonist binding) can/will alter the shape of an α-helix.展开更多
ERK is involved in multiple cell signaling pathways through its interacting proteins. By </span><i><span style="font-size:12px;font-family:Verdana;">in</span></i> <i><s...ERK is involved in multiple cell signaling pathways through its interacting proteins. By </span><i><span style="font-size:12px;font-family:Verdana;">in</span></i> <i><span style="font-size:12px;font-family:Verdana;">silico</span></i><span style="font-size:12px;font-family:Verdana;"> analysis, earlier we have identified 22 putative ERK interacting proteins namely;ephrin type-B receptor 2 isoform 2 precursor (EPHB2), mitogen-activated protein kinase 1</span></span><span "="" style="font-size:10pt;"> </span><span "="" style="font-size:10pt;"><span style="font-size:12px;font-family:Verdana;">(MAPK1), interleukin-17 receptor D precursor (IL17RD), WD repeat domain containing 83 (WDR83), </span><span style="font-size:12px;font-family:Verdana;">tescalcin (Tesc), mitogen-activated protein kinase kinase kinase 4 (MAPP3K4),</span><span style="font-size:12px;font-family:Verdana;"> kinase suppressor of Ras2 (KSR2), mitogen-activated protein kinase kinase 6 (MAP3K6), UL16 binding protein 2 (ULBP2), UL16 binding protein 1 (ULBP1), dual specificity phosphatase 14 (DUSP14), dual specificity phosphatase 6 (DUSP6), hyaluronan-mediated motility receptor (RHAMM), kinase D interacting substrate of 220</span></span><span "="" style="font-size:10pt;"> </span><span "="" style="font-size:12px;font-family:Verdana;">kDa (KININS220), membrane-associated guanylate kinase (MAGI3), phosphoprotein enriched in astrocytes 15</span><span "="" style="font-size:10pt;"> </span><span "="" style="font-size:12px;font-family:Verdana;">(PEA15), typtophenyl-tRNA synthetase, cytoplasmic (WARS), dual specificity phosphatase 9 (DUSP9), mitogen-activated protein kinase kinase kinase 1</span><span "="" style="font-size:10pt;"> </span><span "="" style="font-size:12px;font-family:Verdana;">(MAP3K1), UL16 binding protein 3 (ULBP3), SLAM family member 7 isoform a precursor (SLAMMF7) and mitogen activated protein kinase kinase kinase 11 (MAP3K11) (</span><span "="" style="font-size:10pt;"><a href="file:///E:/%E5%B7%A5%E4%BD%9C%E8%AE%B0%E5%BD%95/2021/0225-wqs-%E5%B7%A5%E4%BD%9C%E8%AE%B0%E5%BD%95/2%E6%9C%88%20WJNS11.1%20%E6%8F%92%E9%A1%B5%E7%A0%81%20%E4%BB%98%E5%96%9C%E4%BB%81%20%EF%BC%887%EF%BC%89(1)/2%E6%9C%88%20WJNS11.1%20%E6%8F%92%E9%A1%B5%E7%A0%81%20%E4%BB%98%E5%96%9C%E4%BB%81%20%EF%BC%887%EF%BC%89/7-1390595.docx#T1"><b><span color:#943634;"="" style="font-size: 12px;font-family: Verdana;">Table 1</span></b></a></span><span "="" style="font-size:10pt;"><span style="font-size:12px;font-family:Verdana;">). However, prediction of secondary structure and domain/motif present in aforementioned ERK interacting proteins is not studied. In this paper, </span><i><span style="font-size:12px;font-family:Verdana;">in</span></i></span><i><span style="font-size:10.0pt;font-family:;" "=""> </span><span style="font-size:12px;font-family:Verdana;" "="">silico</span></i><span "="" style="font-size:12px;font-family:Verdana;"> prediction of secondary structure of ERK interacting proteins was done by SOPMA and motif/domain identification using motif search. Briefly, SOPMA predicted higher random coil and alpha helix percentage in these proteins (</span><span "="" style="font-size:10pt;"><a href="file:///E:/%E5%B7%A5%E4%BD%9C%E8%AE%B0%E5%BD%95/2021/0225-wqs-%E5%B7%A5%E4%BD%9C%E8%AE%B0%E5%BD%95/2%E6%9C%88%20WJNS11.1%20%E6%8F%92%E9%A1%B5%E7%A0%81%20%E4%BB%98%E5%96%9C%E4%BB%81%20%EF%BC%887%EF%BC%89(1)/2%E6%9C%88%20WJNS11.1%20%E6%8F%92%E9%A1%B5%E7%A0%81%20%E4%BB%98%E5%96%9C%E4%BB%81%20%EF%BC%887%EF%BC%89/7-1390595.docx#T2"><b><span color:#943634;"="" style="font-size: 12px;font-family: Verdana;">Table 2</span></b></a></span><span "="" style="font-size:12px;font-family:Verdana;">)</span><span "="" style="font-size:12px;font-family:Verdana;"> and</span><span "="" style="font-size:12px;font-family:Verdana;"> motif scan predicted serine/threonine kinases active site signature and protein kinase ATP binding region in majority of ERK interacting proteins. Moreover, few have commonly dual specificity protein phosphatase family and tyrosine specific protein phosphatase domains (</span><span "="" style="font-size:10pt;"><a href="file:///E:/%E5%B7%A5%E4%BD%9C%E8%AE%B0%E5%BD%95/2021/0225-wqs-%E5%B7%A5%E4%BD%9C%E8%AE%B0%E5%BD%95/2%E6%9C%88%20WJNS11.1%20%E6%8F%92%E9%A1%B5%E7%A0%81%20%E4%BB%98%E5%96%9C%E4%BB%81%20%EF%BC%887%EF%BC%89(1)/2%E6%9C%88%20WJNS11.1%20%E6%8F%92%E9%A1%B5%E7%A0%81%20%E4%BB%98%E5%96%9C%E4%BB%81%20%EF%BC%887%EF%BC%89/7-1390595.docx#T3"><b><span color:#943634;"="" style="font-size: 12px;font-family: Verdana;">Table 3</span></b></a></span><span "="" style="font-size:12px;font-family:Verdana;">). Such study may be helpful to design engineered molecules for regulating ERK dependent pathways in disease condition.展开更多
基金Supported by the National Natural Science Foundation of China under Grant Nos 11247010,11175055,11475053 and 11347017the Natural Science Foundation for Distinguished Young Scholars of Hebei Province under Grant No C2015202340+1 种基金the Natural Science Foundation of Hebei Province under Grant Nos C2012202079 and C201400305the Scientific Innovation Fund for Excellent Young Scientists of Hebei University of Technology under Grant No 2015010
文摘To accomplish their functions, proteins have to achieve different conformations accompanied by conformational transitions. However, the relationship between the preference of amino acids and the stability of the secondary structure is still unclear. Here we perform molecular simulations on a series of helical structures. Our data show that the dissociation energy of the helical structure is related to the preference of amino acids, and the electrostatic repulsion of the residue i and i + 3/4 with the same sign of charge destabilizes the alpha helix.
文摘Alpha helix is a common type of secondary structure in the protein structure that consists of repeating helical turns. Patterns in the protein sequences that cause this repetitive pattern in the structure have long been sought. We used the discrete Fourier transform (DFT) to detect the periodicity signals correlated to the helical structure. We studied the distribution of multiple properties along the protein sequence, and found a property that showed strong periodicity correlated with the helical structure. Using a short-time Fourier transform (STFT) method, we investigated the amplitude of the periodical signals at each amino acid position. The results show that residues in the helix structure tend to display higher amplitudes than residues outside of the helices. This tendency is dramatically strengthen when sequence profiles obtained from multiple alignment were used to detect the periodicity. A simple method that predicted helices based on the amplitude yielded overall true positive rate (TPR) of 63%, 49% sensitivity, 72% specificity, and 0.22 Matthews Correlation Coefficient (MCC). The performance seemed to depend on the length of helices that the proteins had.
基金financially supported by the grants from Sask Pulse Growers,Natural Sciences and Engineering Research Council of Canada(NSERC)the Sask Canola,the Ministry of Agriculture Strategic Research Chair ProgramSask Milk.
文摘Background:This study was conducted to determine protein molecular structure profiles and quantify the relationship between protein structural features and protein metabolism and bioavailability of blend pel eted products(BPP)based on co-products(canola or carinata)from processing with different proportions of pulse pea screenings and lignosulfonate chemical compound.Method:The protein molecular structures were determined using the non-invasive advanced vibrational molecular spectroscopy(ATR-FT/IR)in terms of chemical structure and biofunctional groups of amides(ⅠandⅡ),α-helix andβ-sheet.Results:The results showed that increasing the level of the co-products in BPP significantly increased the spectral intensity of the amide area and amide height.The products exhibited similar protein secondaryα-helix toβ-sheet ratio.The protein molecular structure profiles(amidesⅠandⅡ,α-helix toβ-sheet)were highly associated with protein degradation kinetics and intestinal digestion.In conclusion,the non-invasive vibrational molecular spectroscopy(ATR-FT/IR)could be used to detect inherent structural make-up characteristics in BPP.Conclusion:The molecular structural features related to protein biopolymer were highly associated with protein utilization and metabolism.
文摘目的:探讨T辅助细胞亚群Th1/Th2和Treg在非酒精性脂肪性肝病(nonalcoholic fatty liver disease,NAFLD)发病机制中的意义.方法:SD大鼠正常喂养1wk后,随机分为正常组(n=20)和高脂饮食组(n=20).正常组大鼠以普通饲料喂养,高脂饮食组以高脂饲料喂养.实验第8、16周分批处死大鼠.观察肝组织的病理改变,荧光定量PCR方法检测肝脏TNF-a、IFN-γ、IL-4和Foxp3的基因表达.结果:高脂饮食8wk大鼠肝细胞脂肪变明显,无明显炎症改变,IFN-γ、IL-4在肝脏的基因表达与正常组比较无明显变化,TNF-α稍升高,但无统计学意义,Foxp3 mRNA的表达比正常组明显降低(ct值:26.12±0.69 vs 24.22±0.62,P<0.05).高脂饮食16wk大鼠脂肪肝明显,炎症明显,IFN-γ和TNF-α基因表达均显著升高(ct值:24.52±0.87 vs 29.94±1.44,24.31±1.13 vs 28.88±1.95,均P<0.05),IL-4与正常组相比较无明显变化,Foxp3基因表达较正常组和高脂饮食8wk时均显著降低(ct值:32.57±1.54 vs 24.29±1.08,26.12±0.69,P<0.05).结论:高脂饮食大鼠肝脏Foxp3和Treg表达减少可能是高脂饮食NAFLD发生发展的重要因素.IFN-γ和TNF-α的联合作用加重了肝脏的炎症损伤.
文摘Antimicrobial peptides are promising therapeutic agents in view of increasing resistance to conventional antibiotics. Antimicrobial peptides usually fold in α-helical, β-sheet, and extended/random-coil structures. The α-helical antimicrobial peptides are often unstructured in aqueous solution but become structured on bacterial membrane. The α-helical structure allows the partitioning into bacterial membrane. Therefore it is important to understand the mechanism of unfolding and refolding of α-helical structure in antimicrobial peptides. It is not very easy to obverse and study the process of unfolding and refolding of α-helical antimicrobial peptides because of their rapidity. Therefore, molecular simulation provides a way to observe and explain this phenomenon. Plantaricin A is a 26 amino-acid antimicrobial pheromone peptide and can spontaneously unfold and refold under physiological condition. This study demonstrated the unfolding and refolding of plantaricin A by means of molecular simulation, and its mechanism was discussed with its implication to the Levinthal paradox.
文摘The 3-D structure of the β-adrenergic receptor with a molecular weight of 55,000 daltons is available from crystallographic data. Within one of the seven transmembrane ion channel helices in the β2-receptor, one loop of a helix ACADL has previously been proposed as the site that explains β2 activity (fights acute bronchitis) whereas ASADL in the β1-receptor at the corresponding site explains β1-activity (cardiac stimulation). The α-agonist responsible for this selective reaction is only 0.5% of the receptor molecular weight, and only 1.5% of the weight of the trans-membrane portion of the receptor. The understanding of the mechanism by which a small molecule on binding to a site on one single loop of a helix produces a specific agonist activity on an entire transmembrane ion channel is uncertain. A model of an α-helix is presented in which of pitch occurs at angles both smaller and larger than 180° n. Consequently, atomic coordinates in a peptide backbone α-helix match the data points of individual atom (and atom types) in the backbone. More precisely, eleven atoms in peptide backbone routinely equal one loop of a helix, instead of eleven amino acid residues equaling three loops of a helix;therefore, an α-helix can begin (or end) at any specific atom in a peptide backbone, not just at any specific amino acid. Wavefront Topology System and Finite Element Methods calculate this specific helical shape based only upon circumference, pitch, and phase. Only external forces which specifically affect circumference, pitch and/or phase (e.g. from agonist binding) can/will alter the shape of an α-helix.
基金supported by the National Science Foundation,USA(CHE1111000)National Institute of Health,USA(GM081655)+3 种基金Army Research Office,USA(W911NF-11-1-0251)Defense Threat Reduction Agency,USA(HDTRA1-11-1-0019)Office of Naval Research,USA(N00014-08-1-1211)Semiconductor Research Corporation,USA(P10419)
文摘ERK is involved in multiple cell signaling pathways through its interacting proteins. By </span><i><span style="font-size:12px;font-family:Verdana;">in</span></i> <i><span style="font-size:12px;font-family:Verdana;">silico</span></i><span style="font-size:12px;font-family:Verdana;"> analysis, earlier we have identified 22 putative ERK interacting proteins namely;ephrin type-B receptor 2 isoform 2 precursor (EPHB2), mitogen-activated protein kinase 1</span></span><span "="" style="font-size:10pt;"> </span><span "="" style="font-size:10pt;"><span style="font-size:12px;font-family:Verdana;">(MAPK1), interleukin-17 receptor D precursor (IL17RD), WD repeat domain containing 83 (WDR83), </span><span style="font-size:12px;font-family:Verdana;">tescalcin (Tesc), mitogen-activated protein kinase kinase kinase 4 (MAPP3K4),</span><span style="font-size:12px;font-family:Verdana;"> kinase suppressor of Ras2 (KSR2), mitogen-activated protein kinase kinase 6 (MAP3K6), UL16 binding protein 2 (ULBP2), UL16 binding protein 1 (ULBP1), dual specificity phosphatase 14 (DUSP14), dual specificity phosphatase 6 (DUSP6), hyaluronan-mediated motility receptor (RHAMM), kinase D interacting substrate of 220</span></span><span "="" style="font-size:10pt;"> </span><span "="" style="font-size:12px;font-family:Verdana;">kDa (KININS220), membrane-associated guanylate kinase (MAGI3), phosphoprotein enriched in astrocytes 15</span><span "="" style="font-size:10pt;"> </span><span "="" style="font-size:12px;font-family:Verdana;">(PEA15), typtophenyl-tRNA synthetase, cytoplasmic (WARS), dual specificity phosphatase 9 (DUSP9), mitogen-activated protein kinase kinase kinase 1</span><span "="" style="font-size:10pt;"> </span><span "="" style="font-size:12px;font-family:Verdana;">(MAP3K1), UL16 binding protein 3 (ULBP3), SLAM family member 7 isoform a precursor (SLAMMF7) and mitogen activated protein kinase kinase kinase 11 (MAP3K11) (</span><span "="" style="font-size:10pt;"><a href="file:///E:/%E5%B7%A5%E4%BD%9C%E8%AE%B0%E5%BD%95/2021/0225-wqs-%E5%B7%A5%E4%BD%9C%E8%AE%B0%E5%BD%95/2%E6%9C%88%20WJNS11.1%20%E6%8F%92%E9%A1%B5%E7%A0%81%20%E4%BB%98%E5%96%9C%E4%BB%81%20%EF%BC%887%EF%BC%89(1)/2%E6%9C%88%20WJNS11.1%20%E6%8F%92%E9%A1%B5%E7%A0%81%20%E4%BB%98%E5%96%9C%E4%BB%81%20%EF%BC%887%EF%BC%89/7-1390595.docx#T1"><b><span color:#943634;"="" style="font-size: 12px;font-family: Verdana;">Table 1</span></b></a></span><span "="" style="font-size:10pt;"><span style="font-size:12px;font-family:Verdana;">). However, prediction of secondary structure and domain/motif present in aforementioned ERK interacting proteins is not studied. In this paper, </span><i><span style="font-size:12px;font-family:Verdana;">in</span></i></span><i><span style="font-size:10.0pt;font-family:;" "=""> </span><span style="font-size:12px;font-family:Verdana;" "="">silico</span></i><span "="" style="font-size:12px;font-family:Verdana;"> prediction of secondary structure of ERK interacting proteins was done by SOPMA and motif/domain identification using motif search. Briefly, SOPMA predicted higher random coil and alpha helix percentage in these proteins (</span><span "="" style="font-size:10pt;"><a href="file:///E:/%E5%B7%A5%E4%BD%9C%E8%AE%B0%E5%BD%95/2021/0225-wqs-%E5%B7%A5%E4%BD%9C%E8%AE%B0%E5%BD%95/2%E6%9C%88%20WJNS11.1%20%E6%8F%92%E9%A1%B5%E7%A0%81%20%E4%BB%98%E5%96%9C%E4%BB%81%20%EF%BC%887%EF%BC%89(1)/2%E6%9C%88%20WJNS11.1%20%E6%8F%92%E9%A1%B5%E7%A0%81%20%E4%BB%98%E5%96%9C%E4%BB%81%20%EF%BC%887%EF%BC%89/7-1390595.docx#T2"><b><span color:#943634;"="" style="font-size: 12px;font-family: Verdana;">Table 2</span></b></a></span><span "="" style="font-size:12px;font-family:Verdana;">)</span><span "="" style="font-size:12px;font-family:Verdana;"> and</span><span "="" style="font-size:12px;font-family:Verdana;"> motif scan predicted serine/threonine kinases active site signature and protein kinase ATP binding region in majority of ERK interacting proteins. Moreover, few have commonly dual specificity protein phosphatase family and tyrosine specific protein phosphatase domains (</span><span "="" style="font-size:10pt;"><a href="file:///E:/%E5%B7%A5%E4%BD%9C%E8%AE%B0%E5%BD%95/2021/0225-wqs-%E5%B7%A5%E4%BD%9C%E8%AE%B0%E5%BD%95/2%E6%9C%88%20WJNS11.1%20%E6%8F%92%E9%A1%B5%E7%A0%81%20%E4%BB%98%E5%96%9C%E4%BB%81%20%EF%BC%887%EF%BC%89(1)/2%E6%9C%88%20WJNS11.1%20%E6%8F%92%E9%A1%B5%E7%A0%81%20%E4%BB%98%E5%96%9C%E4%BB%81%20%EF%BC%887%EF%BC%89/7-1390595.docx#T3"><b><span color:#943634;"="" style="font-size: 12px;font-family: Verdana;">Table 3</span></b></a></span><span "="" style="font-size:12px;font-family:Verdana;">). Such study may be helpful to design engineered molecules for regulating ERK dependent pathways in disease condition.