NF-κB plays a crucial role in regulating various biological processes including innate and adaptive immunity, inflammation, stress responses, B-cell development, and lymphoid organogenesis. Currently, several assays ...NF-κB plays a crucial role in regulating various biological processes including innate and adaptive immunity, inflammation, stress responses, B-cell development, and lymphoid organogenesis. Currently, several assays like electrophoretic mobility shift assay (EMSA), enzyme-linked immunosorbent assay (ELISA), fluorescence resonance energy transfer (FRET) and time-resolved fluorescence resonance energy transfer (TR-FRET) are widely used for studying the NFκB intraction with β-IFN-κB binding oligo. Each of these techniques has varying utility with distinct strengths and weaknesses. We describe a method AlphaLISA to identify NFκB p50 protein and β-IFN-κB binding oligo sequence and interaction is efficient at a given concentration (10 nM) in the EMSA and Biacore’s SPR assays. The method has many advantages such as use of small volume, high throughput (HTP), convenience of sample preparation and data analysis.展开更多
文摘NF-κB plays a crucial role in regulating various biological processes including innate and adaptive immunity, inflammation, stress responses, B-cell development, and lymphoid organogenesis. Currently, several assays like electrophoretic mobility shift assay (EMSA), enzyme-linked immunosorbent assay (ELISA), fluorescence resonance energy transfer (FRET) and time-resolved fluorescence resonance energy transfer (TR-FRET) are widely used for studying the NFκB intraction with β-IFN-κB binding oligo. Each of these techniques has varying utility with distinct strengths and weaknesses. We describe a method AlphaLISA to identify NFκB p50 protein and β-IFN-κB binding oligo sequence and interaction is efficient at a given concentration (10 nM) in the EMSA and Biacore’s SPR assays. The method has many advantages such as use of small volume, high throughput (HTP), convenience of sample preparation and data analysis.