期刊文献+
共找到15篇文章
< 1 >
每页显示 20 50 100
Full-vectorial finite-difference beam propagation method based on the modified alternating direction implicit method 被引量:1
1
作者 肖金标 孙小菡 《Chinese Physics B》 SCIE EI CAS CSCD 2006年第8期1824-1830,共7页
A modified alternating direction implicit algorithm is proposed to solve the full-vectorial finite-difference beam propagation method formulation based on H fields. The cross-coupling terms are neglected in the first ... A modified alternating direction implicit algorithm is proposed to solve the full-vectorial finite-difference beam propagation method formulation based on H fields. The cross-coupling terms are neglected in the first sub-step, but evaluated and doubly used in the second sub-step. The order of two sub-steps is reversed for each transverse magnetic field component so that the cross-coupling terms are always expressed in implicit form, thus the calculation is very efficient and stable. Moreover, an improved six-point finite-difference scheme with high accuracy independent of specific structures of waveguide is also constructed to approximate the cross-coupling terms along the transverse directions. The imaginary-distance procedure is used to assess the validity and utility of the present method. The field patterns and the normalized propagation constants of the fundamental mode for a buried rectangular waveguide and a rib waveguide are presented. Solutions are in excellent agreement with the benchmark results from the modal transverse resonance method. 展开更多
关键词 beam propagation method alternating direction implicit algorithm finite difference optical waveguides integrated optics
下载PDF
Perfectly matched layer implementation for ADI-FDTD in dispersive media 被引量:2
2
作者 Wang Yu Yuan Naichang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2006年第1期80-84,共5页
Alternating direction implicit finite difference time domain (ADI-FDTD) method is unconditionally stable and the maximum time step is not limited by the Courant stability condition, but rather by numerical error. Co... Alternating direction implicit finite difference time domain (ADI-FDTD) method is unconditionally stable and the maximum time step is not limited by the Courant stability condition, but rather by numerical error. Compared with the conventional FDTD method, the time step of ADI-FDTD can be enlarged arbitrarily and the CPU cost can be reduced. 2D perfectly matched layer (PML) absorbing boundary condition is proposed to truncate computation space for ADI-FDTD in dispersive media using recursive convolution(RC) method and the 2D PML formulations for dispersive media are derived. ADI-FDTD formulations for dispersive media can be obtained from the simplified PML formulations. The scattering of target in dispersive soil is simulated under sine wave and Gaussian pulse excitations and numerical results of ADI-FDTD with PML are compared with FDTD. Good agreement is observed. At the same time the CPU cost for ADI-FDTD is obviously reduced. 展开更多
关键词 perfectly matched layer alternating direction implicit finite difference time domain dispersive media
下载PDF
Crank-Nicolson ADI Galerkin Finite Element Methods for Two Classes of Riesz Space Fractional Partial Differential Equations 被引量:1
3
作者 An Chen 《Computer Modeling in Engineering & Sciences》 SCIE EI 2020年第6期917-939,共23页
In this paper,two classes of Riesz space fractional partial differential equations including space-fractional and space-time-fractional ones are considered.These two models can be regarded as the generalization of the... In this paper,two classes of Riesz space fractional partial differential equations including space-fractional and space-time-fractional ones are considered.These two models can be regarded as the generalization of the classical wave equation in two space dimensions.Combining with the Crank-Nicolson method in temporal direction,efficient alternating direction implicit Galerkin finite element methods for solving these two fractional models are developed,respectively.The corresponding stability and convergence analysis of the numerical methods are discussed.Numerical results are provided to verify the theoretical analysis. 展开更多
关键词 Fractional partial differential equations Galerkin approximation alternating direction implicit method STABILITY CONVERGENCE
下载PDF
High accuracy compact finite difference methods and their applications
4
作者 田振夫 《Journal of Shanghai University(English Edition)》 CAS 2006年第6期558-560,共3页
Numerical simulation of complex flow fields with multi-scale structures is one of the most important and challenging branches of computational fluid dynamics. From linear analysis and numerical experiments it has been... Numerical simulation of complex flow fields with multi-scale structures is one of the most important and challenging branches of computational fluid dynamics. From linear analysis and numerical experiments it has been discovered that the higher-order accurate method can give reliable and efficient computational results, as well as better resolution of the complex flow fields with multi-scale structures. Compact finite difference schemes, which feature higher-order accuracy and spectral-like resolution with smaller stencils and easier application of boundary conditions, has attracted more and more interest and attention. 展开更多
关键词 computational fluid dynamics CFD incompressible flow convection-diffusion equation Navier-Stokes equations compact finite difference approximation alternating direction implicit method numerical simulation.
下载PDF
Reliable approach for bistatic scattering of three-dimensional targets from underlying rough surface based on parabolic equation
5
作者 张东民 廖成 +2 位作者 周亮 邓小川 冯菊 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第7期314-320,共7页
A parabolic equation (PE) based method for analyzing composite scattering under an electromagnetic wave incidence at low grazing angle, which composes of three-dimensional (3-D) electrically large targets and roug... A parabolic equation (PE) based method for analyzing composite scattering under an electromagnetic wave incidence at low grazing angle, which composes of three-dimensional (3-D) electrically large targets and rough surface, is presented and discussed. A superior high-order PE version is used to improve the accuracy at wider paraxial angles, and along with the alternating direction implicit (ADI) differential technique, the computational efficiency is further improved. The formula of bistatic normalized radar cross section is derived by definition and near-far field transformation. Numerical examples are given to show the validity and accuracy of the proposed approach, in which the results are compared with those of Kirchhoff approximation (KA) and moment of method (MoM). Furthermore, the bistatic scattering properties of composite model in which the 3-D PEC targets on or above the two-dimensional Gaussian rough surfaces under the tapered wave incidence are analyzed. 展开更多
关键词 parabolic equation rough surface alternating direction implicit (ADI) difference normalizedradar cross section
下载PDF
Efficient high-order immersed interface methods for heat equations with interfaces
6
作者 刘建康 郑洲顺 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2014年第9期1189-1202,共14页
An efficient high-order immersed interface method (IIM) is proposed to solve two-dimensional (2D) heat problems with fixed interfaces on Cartesian grids, which has the fourth-order accuracy in the maximum norm in ... An efficient high-order immersed interface method (IIM) is proposed to solve two-dimensional (2D) heat problems with fixed interfaces on Cartesian grids, which has the fourth-order accuracy in the maximum norm in both time and space directions. The space variable is discretized by a high-order compact (HOC) difference scheme with correction terms added at the irregular points. The time derivative is integrated by a Crank-Nicolson and alternative direction implicit (ADI) scheme. In this case, the time accuracy is just second-order. The Richardson extrapolation method is used to improve the time accuracy to fourth-order. The numerical results confirm the convergence order and the efficiency of the method. 展开更多
关键词 high-order compact (HOC) scheme alternative direction implicit (ADI)scheme immersed interface method (IIM) Richardson extrapolation method
下载PDF
Alternating Direction Implicit Galerkin Finite Element Method for the Two-Dimensional Time Fractional Evolution Equation
7
作者 Limei Li Da Xu 《Numerical Mathematics(Theory,Methods and Applications)》 SCIE 2014年第1期41-57,共17页
New numerical techniques are presented for the solution of the twodimensional time fractional evolution equation in the unit square.In these methods,Galerkin finite element is used for the spatial discretization,and,f... New numerical techniques are presented for the solution of the twodimensional time fractional evolution equation in the unit square.In these methods,Galerkin finite element is used for the spatial discretization,and,for the time stepping,new alternating direction implicit(ADI)method based on the backward Euler method combined with the first order convolution quadrature approximating the integral term are considered.The ADI Galerkin finite element method is proved to be convergent in time and in the L2 norm in space.The convergence order is O(k|ln k|+h^(r)),where k is the temporal grid size and h is spatial grid size in the x and y directions,respectively.Numerical results are presented to support our theoretical analysis. 展开更多
关键词 Fractional evolution equation alternating direction implicit method Galerkin finite element method backward Euler
原文传递
An ADI Finite Volume Element Method for a Viscous Wave Equation with Variable Coefficients
8
作者 Mengya Su Zhihao Ren Zhiyue Zhang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2020年第5期739-776,共38页
Based on rectangular partition and bilinear interpolation,we construct an alternating-direction implicit(ADI)finite volume element method,which combined the merits of finite volume element method and alternating direc... Based on rectangular partition and bilinear interpolation,we construct an alternating-direction implicit(ADI)finite volume element method,which combined the merits of finite volume element method and alternating direction implicit method to solve a viscous wave equation with variable coefficients.This paper presents a general procedure to construct the alternating-direction implicit finite volume element method and gives computational schemes.Optimal error estimate in L2 norm is obtained for the schemes.Compared with the finite volume element method of the same convergence order,our method is more effective in terms of running time with the increasing of the computing scale.Numerical experiments are presented to show the efficiency of our method and numerical results are provided to support our theoretical analysis. 展开更多
关键词 Viscous wave equation alternating direction implicit finite volume element method error estimates L2 norm
下载PDF
AN ADI GALERKIN METHOD WITH MOVING FINITE ELEMENT SPACES FOR A CLASS OF SECOND-ORDER HYPERBOLIC EQUATIONS
9
作者 孙同军 《Numerical Mathematics A Journal of Chinese Universities(English Series)》 SCIE 2001年第1期45-58,共14页
An alternating direction implicit (ADI) Galerkin method with moving finite element spaces is formulated for a class of second order hyperbolic equations in two space variables. A priori H 1 error estimate is derived.
关键词 alternating direction implicit method moving finite element second order hyperbolic equations.
下载PDF
Analysis of Gray Scott’s Model Numerically
10
作者 Ahmed Abdulrahim Ahmed Amin Daoud Suleiman Mashat 《American Journal of Computational Mathematics》 2021年第4期273-288,共16页
In this paper, a two-dimensional nonlinear coupled Gray Scott system is simulated with a finite difference scheme and a finite volume technique. Pre and post-processing lead to a new solution called GSmFoam by underst... In this paper, a two-dimensional nonlinear coupled Gray Scott system is simulated with a finite difference scheme and a finite volume technique. Pre and post-processing lead to a new solution called GSmFoam by understandin<span>g geometry settings and mesh information. The concentration profile chan</span>ges over time, as does the intensity of the contour patterns. The OpenFoam solver gives you the confidence to compare the pattern result with efficient numerical algorithms on the Gray Scott model. 展开更多
关键词 Fourth Order Compact Scheme Finite Volume Method Fully implicit Scheme Alternating direction implicit (ADI) Scheme
Gray Scott Solver OPENFOAM
下载PDF
ADI Finite Element Method for 2D Nonlinear Time Fractional Reaction-Subdiffusion Equation
11
作者 Peng Zhu Shenglan Xie 《American Journal of Computational Mathematics》 2016年第4期336-356,共21页
In this paper, an alternating direction Galerkin finite element method is presented for solving 2D time fractional reaction sub-diffusion equation with nonlinear source term. Firstly, one order implicit-explicit metho... In this paper, an alternating direction Galerkin finite element method is presented for solving 2D time fractional reaction sub-diffusion equation with nonlinear source term. Firstly, one order implicit-explicit method is used for time discretization, then Galerkin finite element method is adopted for spatial discretization and obtain a fully discrete linear system. Secondly, Galerkin alternating direction procedure for the system is derived by adding an extra term. Finally, the stability and convergence of the method are analyzed rigorously. Numerical results confirm the accuracy and efficiency of the proposed method. 展开更多
关键词 Nonlinear Fractional Differential Equation Alternating direction implicit Method Finite Element Method Riemann-Liouville Fractional Derivative
下载PDF
EFFICIENT NUMERICAL ALGORITHMS FOR THREE-DIMENSIONAL FRACTIONAL PARTIAL DIFFERENTIAL EQUATIONS 被引量:3
12
作者 Weihua Deng Minghua Chen 《Journal of Computational Mathematics》 SCIE CSCD 2014年第4期371-391,共21页
This paper detailedly discusses the locally one-dimensional numerical methods for ef- ficiently solving the three-dimensional fractional partial differential equations, including fractional advection diffusion equatio... This paper detailedly discusses the locally one-dimensional numerical methods for ef- ficiently solving the three-dimensional fractional partial differential equations, including fractional advection diffusion equation and Riesz fractional diffusion equation. The second order finite difference scheme is used to discretize the space fractional derivative and the Crank-Nicolson procedure to the time derivative. We theoretically prove and numerically verify that the presented numerical methods are unconditionally stable and second order convergent in both space and time directions. In particular, for the Riesz fractional dif- fusion equation, the idea of reducing the splitting error is used to further improve the algorithm, and the unconditional stability and convergency are also strictly proved and numerically verified for the improved scheme. 展开更多
关键词 Fractional partial differential equations Numerical stability Locally one dimensional method Crank-Nicolson procedure Alternating direction implicit method.
原文传递
Numerical Methods for Semilinear Fractional Diffusion Equations with Time Delay 被引量:1
13
作者 Shuiping Yang Yubin Liu +1 位作者 Hongyu Liu Chao Wang 《Advances in Applied Mathematics and Mechanics》 SCIE 2022年第1期56-78,共23页
In this paper,we consider the numerical solutions of the semilinear Riesz space-fractional diffusion equations(RSFDEs)with time delay,which constitute an important class of differential equations of practical signific... In this paper,we consider the numerical solutions of the semilinear Riesz space-fractional diffusion equations(RSFDEs)with time delay,which constitute an important class of differential equations of practical significance.We develop a novel implicit alternating direction method that can effectively and efficiently tackle the RSFDEs in both two and three dimensions.The numerical method is proved to be uniquely solvable,stable and convergent with second order accuracy in both space and time.Numerical results are presented to verify the accuracy and efficiency of the proposed numerical scheme. 展开更多
关键词 Semilinear Riesz space fractional diffusion equations with time delay implicit alternating direction method stability and convergence
原文传递
ADI Galerkin FEMs for the 2D nonlinear time-space fractional diffusion-wave equation
14
作者 Meng Li Chengming Huang 《International Journal of Modeling, Simulation, and Scientific Computing》 EI 2017年第3期112-134,共23页
In this paper,we study a new numerical technique for a class of 2D nonlinear fractional diffusion-wave equations with the Caputo-type temporal derivative and Riesz-type spatial derivative.Galerkin finite element schem... In this paper,we study a new numerical technique for a class of 2D nonlinear fractional diffusion-wave equations with the Caputo-type temporal derivative and Riesz-type spatial derivative.Galerkin finite element scheme is used for the discretization in the spatial direction,and the temporal component is discretized by a new alternating direction implicit(ADI)method.Next,we strictly prove that the numerical method is stable and convergent.Finally,to confirm our theoretical analysis,some numerical examples in 2D space are presented. 展开更多
关键词 Time and space fractional diffusion-wave equation alternating direction implicit method Galerkin FEM STABILITY CONVERGENCE
原文传递
Splitting Finite Difference Methods on Staggered Grids for the Three-Dimensional Time-Dependent Maxwell Equations
15
作者 Liping Gao Bo Zhang Dong Liang 《Communications in Computational Physics》 SCIE 2008年第7期405-432,共28页
In this paper,we study splitting numerical methods for the three-dimensional Maxwell equations in the time domain.We propose a new kind of splitting finitedifference time-domain schemes on a staggered grid,which consi... In this paper,we study splitting numerical methods for the three-dimensional Maxwell equations in the time domain.We propose a new kind of splitting finitedifference time-domain schemes on a staggered grid,which consists of only two stages for each time step.It is proved by the energy method that the splitting scheme is unconditionally stable and convergent for problems with perfectly conducting boundary conditions.Both numerical dispersion analysis and numerical experiments are also presented to illustrate the efficiency of the proposed schemes. 展开更多
关键词 Splitting scheme alternating direction implicit method finite-difference time-domain method stability CONVERGENCE Maxwell’s equations perfectly conducting boundary
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部