In this paper,two classes of Riesz space fractional partial differential equations including space-fractional and space-time-fractional ones are considered.These two models can be regarded as the generalization of the...In this paper,two classes of Riesz space fractional partial differential equations including space-fractional and space-time-fractional ones are considered.These two models can be regarded as the generalization of the classical wave equation in two space dimensions.Combining with the Crank-Nicolson method in temporal direction,efficient alternating direction implicit Galerkin finite element methods for solving these two fractional models are developed,respectively.The corresponding stability and convergence analysis of the numerical methods are discussed.Numerical results are provided to verify the theoretical analysis.展开更多
Numerical simulation of complex flow fields with multi-scale structures is one of the most important and challenging branches of computational fluid dynamics. From linear analysis and numerical experiments it has been...Numerical simulation of complex flow fields with multi-scale structures is one of the most important and challenging branches of computational fluid dynamics. From linear analysis and numerical experiments it has been discovered that the higher-order accurate method can give reliable and efficient computational results, as well as better resolution of the complex flow fields with multi-scale structures. Compact finite difference schemes, which feature higher-order accuracy and spectral-like resolution with smaller stencils and easier application of boundary conditions, has attracted more and more interest and attention.展开更多
An alternating direction implicit (ADI) Galerkin method with moving finite element spaces is formulated for a class of second order hyperbolic equations in two space variables. A priori H 1 error estimate is derived.
Based on rectangular partition and bilinear interpolation,we construct an alternating-direction implicit(ADI)finite volume element method,which combined the merits of finite volume element method and alternating direc...Based on rectangular partition and bilinear interpolation,we construct an alternating-direction implicit(ADI)finite volume element method,which combined the merits of finite volume element method and alternating direction implicit method to solve a viscous wave equation with variable coefficients.This paper presents a general procedure to construct the alternating-direction implicit finite volume element method and gives computational schemes.Optimal error estimate in L2 norm is obtained for the schemes.Compared with the finite volume element method of the same convergence order,our method is more effective in terms of running time with the increasing of the computing scale.Numerical experiments are presented to show the efficiency of our method and numerical results are provided to support our theoretical analysis.展开更多
In this paper, an alternating direction Galerkin finite element method is presented for solving 2D time fractional reaction sub-diffusion equation with nonlinear source term. Firstly, one order implicit-explicit metho...In this paper, an alternating direction Galerkin finite element method is presented for solving 2D time fractional reaction sub-diffusion equation with nonlinear source term. Firstly, one order implicit-explicit method is used for time discretization, then Galerkin finite element method is adopted for spatial discretization and obtain a fully discrete linear system. Secondly, Galerkin alternating direction procedure for the system is derived by adding an extra term. Finally, the stability and convergence of the method are analyzed rigorously. Numerical results confirm the accuracy and efficiency of the proposed method.展开更多
New numerical techniques are presented for the solution of the twodimensional time fractional evolution equation in the unit square.In these methods,Galerkin finite element is used for the spatial discretization,and,f...New numerical techniques are presented for the solution of the twodimensional time fractional evolution equation in the unit square.In these methods,Galerkin finite element is used for the spatial discretization,and,for the time stepping,new alternating direction implicit(ADI)method based on the backward Euler method combined with the first order convolution quadrature approximating the integral term are considered.The ADI Galerkin finite element method is proved to be convergent in time and in the L2 norm in space.The convergence order is O(k|ln k|+h^(r)),where k is the temporal grid size and h is spatial grid size in the x and y directions,respectively.Numerical results are presented to support our theoretical analysis.展开更多
In this paper,we study splitting numerical methods for the three-dimensional Maxwell equations in the time domain.We propose a new kind of splitting finitedifference time-domain schemes on a staggered grid,which consi...In this paper,we study splitting numerical methods for the three-dimensional Maxwell equations in the time domain.We propose a new kind of splitting finitedifference time-domain schemes on a staggered grid,which consists of only two stages for each time step.It is proved by the energy method that the splitting scheme is unconditionally stable and convergent for problems with perfectly conducting boundary conditions.Both numerical dispersion analysis and numerical experiments are also presented to illustrate the efficiency of the proposed schemes.展开更多
In this paper,we consider the numerical solutions of the semilinear Riesz space-fractional diffusion equations(RSFDEs)with time delay,which constitute an important class of differential equations of practical signific...In this paper,we consider the numerical solutions of the semilinear Riesz space-fractional diffusion equations(RSFDEs)with time delay,which constitute an important class of differential equations of practical significance.We develop a novel implicit alternating direction method that can effectively and efficiently tackle the RSFDEs in both two and three dimensions.The numerical method is proved to be uniquely solvable,stable and convergent with second order accuracy in both space and time.Numerical results are presented to verify the accuracy and efficiency of the proposed numerical scheme.展开更多
This paper is concerned with the optimal error estimates and energy conservation properties of the alternating direction implicit finite-difference time-domain (ADI-FDTD) method which is a popular scheme for solving...This paper is concerned with the optimal error estimates and energy conservation properties of the alternating direction implicit finite-difference time-domain (ADI-FDTD) method which is a popular scheme for solving the 3D Maxwell's equations. Precisely, for the case with a perfectly electric conducting (PEC) boundary condition we establish the optimal second-order error estimates in both space and time in the discrete Hi-norm for the ADI-FDTD scheme, and prove the approximate divergence preserving property that if the divergence of the initial electric and magnetic fields are zero, then the discrete L2-norm of the discrete divergence of the ADI-FDTD solution is approximately zero with the second-order accuracy in both space and time. The key ingredient is two new discrete modified energy norms which are second-order in time perturbations of two new energy conservation laws for the Maxwell's equations introduced in this paper. ~rthermore, we prove that, in addition to two known discrete modified energy identities which are second-order in time perturbations of two known energy conservation laws, the ADI-FDTD scheme also satisfies two new discrete modified energy identities which are second-order in time perturbations of the two new energy conservation laws. This means that the ADI-FDTD scheme is unconditionally stable under the four discrete modified energy norms. Experimental results which confirm the theoretical results are presented.展开更多
This paper detailedly discusses the locally one-dimensional numerical methods for ef- ficiently solving the three-dimensional fractional partial differential equations, including fractional advection diffusion equatio...This paper detailedly discusses the locally one-dimensional numerical methods for ef- ficiently solving the three-dimensional fractional partial differential equations, including fractional advection diffusion equation and Riesz fractional diffusion equation. The second order finite difference scheme is used to discretize the space fractional derivative and the Crank-Nicolson procedure to the time derivative. We theoretically prove and numerically verify that the presented numerical methods are unconditionally stable and second order convergent in both space and time directions. In particular, for the Riesz fractional dif- fusion equation, the idea of reducing the splitting error is used to further improve the algorithm, and the unconditional stability and convergency are also strictly proved and numerically verified for the improved scheme.展开更多
A three-dimensional hydrodynamic model is presented which combines a terrain-following vertical coordinate with a horizontally orthogonal curvilinear coordinate system to fit the complex bottom topography and coastlin...A three-dimensional hydrodynamic model is presented which combines a terrain-following vertical coordinate with a horizontally orthogonal curvilinear coordinate system to fit the complex bottom topography and coastlines near estuaries, continental shelves, and harbors. To solve the governing equations more efficiently, we improve the alternating direction implicit method, which is extensively used in the numerical modeling of horizontal two-dimensional shallow water equations, and extend it to a three-dimensional tidal model with relatively little computational effort. Through several test cases and realistic applications, as presented in the paper, it can be demonstrated that the model is capable of simulating the periodic to-and-fro currents, wind-driven flow, Ekman spirals, and tidal currents in the near-shore region.展开更多
In this paper,we study a new numerical technique for a class of 2D nonlinear fractional diffusion-wave equations with the Caputo-type temporal derivative and Riesz-type spatial derivative.Galerkin finite element schem...In this paper,we study a new numerical technique for a class of 2D nonlinear fractional diffusion-wave equations with the Caputo-type temporal derivative and Riesz-type spatial derivative.Galerkin finite element scheme is used for the discretization in the spatial direction,and the temporal component is discretized by a new alternating direction implicit(ADI)method.Next,we strictly prove that the numerical method is stable and convergent.Finally,to confirm our theoretical analysis,some numerical examples in 2D space are presented.展开更多
基金supported by the Guangxi Natural Science Foundation[grant numbers 2018GXNSFBA281020,2018GXNSFAA138121]the Doctoral Starting up Foundation of Guilin University of Technology[grant number GLUTQD2016044].
文摘In this paper,two classes of Riesz space fractional partial differential equations including space-fractional and space-time-fractional ones are considered.These two models can be regarded as the generalization of the classical wave equation in two space dimensions.Combining with the Crank-Nicolson method in temporal direction,efficient alternating direction implicit Galerkin finite element methods for solving these two fractional models are developed,respectively.The corresponding stability and convergence analysis of the numerical methods are discussed.Numerical results are provided to verify the theoretical analysis.
文摘Numerical simulation of complex flow fields with multi-scale structures is one of the most important and challenging branches of computational fluid dynamics. From linear analysis and numerical experiments it has been discovered that the higher-order accurate method can give reliable and efficient computational results, as well as better resolution of the complex flow fields with multi-scale structures. Compact finite difference schemes, which feature higher-order accuracy and spectral-like resolution with smaller stencils and easier application of boundary conditions, has attracted more and more interest and attention.
基金the National Natural Sciences Foundation of China
文摘An alternating direction implicit (ADI) Galerkin method with moving finite element spaces is formulated for a class of second order hyperbolic equations in two space variables. A priori H 1 error estimate is derived.
基金supported by the National Natural Science Foundation of China grants No.11971241.
文摘Based on rectangular partition and bilinear interpolation,we construct an alternating-direction implicit(ADI)finite volume element method,which combined the merits of finite volume element method and alternating direction implicit method to solve a viscous wave equation with variable coefficients.This paper presents a general procedure to construct the alternating-direction implicit finite volume element method and gives computational schemes.Optimal error estimate in L2 norm is obtained for the schemes.Compared with the finite volume element method of the same convergence order,our method is more effective in terms of running time with the increasing of the computing scale.Numerical experiments are presented to show the efficiency of our method and numerical results are provided to support our theoretical analysis.
文摘In this paper, an alternating direction Galerkin finite element method is presented for solving 2D time fractional reaction sub-diffusion equation with nonlinear source term. Firstly, one order implicit-explicit method is used for time discretization, then Galerkin finite element method is adopted for spatial discretization and obtain a fully discrete linear system. Secondly, Galerkin alternating direction procedure for the system is derived by adding an extra term. Finally, the stability and convergence of the method are analyzed rigorously. Numerical results confirm the accuracy and efficiency of the proposed method.
基金The authors would like to thank the referees for their valuable comments and suggestionsThis work was supported by the National Natural Science Foundation of China,contract grant number 11271123.
文摘New numerical techniques are presented for the solution of the twodimensional time fractional evolution equation in the unit square.In these methods,Galerkin finite element is used for the spatial discretization,and,for the time stepping,new alternating direction implicit(ADI)method based on the backward Euler method combined with the first order convolution quadrature approximating the integral term are considered.The ADI Galerkin finite element method is proved to be convergent in time and in the L2 norm in space.The convergence order is O(k|ln k|+h^(r)),where k is the temporal grid size and h is spatial grid size in the x and y directions,respectively.Numerical results are presented to support our theoretical analysis.
文摘In this paper,we study splitting numerical methods for the three-dimensional Maxwell equations in the time domain.We propose a new kind of splitting finitedifference time-domain schemes on a staggered grid,which consists of only two stages for each time step.It is proved by the energy method that the splitting scheme is unconditionally stable and convergent for problems with perfectly conducting boundary conditions.Both numerical dispersion analysis and numerical experiments are also presented to illustrate the efficiency of the proposed schemes.
基金supported by National Natural Science Foundation(NSF)of China(Grant No.11501238)NSF of Guangdong Province(Grant No.2016A030313119)and NSF of Huizhou University(Grant No.hzu201806)+2 种基金supported by the startup fund from City University of Hong Kong and the Hong Kong RGC General Research Fund(projects Nos.12301420,12302919 and 12301218)supported by the NSF of China No.11971221the Shenzhen Sci-Tech Fund No.JCYJ20190809150413261,JCYJ20180307151603959,and JCYJ20170818153840322,and Guangdong Provincial Key Laboratory of Computational Science and Material Design(No.2019B030301001).
文摘In this paper,we consider the numerical solutions of the semilinear Riesz space-fractional diffusion equations(RSFDEs)with time delay,which constitute an important class of differential equations of practical significance.We develop a novel implicit alternating direction method that can effectively and efficiently tackle the RSFDEs in both two and three dimensions.The numerical method is proved to be uniquely solvable,stable and convergent with second order accuracy in both space and time.Numerical results are presented to verify the accuracy and efficiency of the proposed numerical scheme.
基金supported by Natural Science Foundation of Shandong Province (GrantNo. Y2008A19)Research Reward for Excellent Young Scientists from Shandong Province (Grant No. 2007BS01020)National Natural Science Foundation of China (Grant No. 11071244)
文摘This paper is concerned with the optimal error estimates and energy conservation properties of the alternating direction implicit finite-difference time-domain (ADI-FDTD) method which is a popular scheme for solving the 3D Maxwell's equations. Precisely, for the case with a perfectly electric conducting (PEC) boundary condition we establish the optimal second-order error estimates in both space and time in the discrete Hi-norm for the ADI-FDTD scheme, and prove the approximate divergence preserving property that if the divergence of the initial electric and magnetic fields are zero, then the discrete L2-norm of the discrete divergence of the ADI-FDTD solution is approximately zero with the second-order accuracy in both space and time. The key ingredient is two new discrete modified energy norms which are second-order in time perturbations of two new energy conservation laws for the Maxwell's equations introduced in this paper. ~rthermore, we prove that, in addition to two known discrete modified energy identities which are second-order in time perturbations of two known energy conservation laws, the ADI-FDTD scheme also satisfies two new discrete modified energy identities which are second-order in time perturbations of the two new energy conservation laws. This means that the ADI-FDTD scheme is unconditionally stable under the four discrete modified energy norms. Experimental results which confirm the theoretical results are presented.
文摘This paper detailedly discusses the locally one-dimensional numerical methods for ef- ficiently solving the three-dimensional fractional partial differential equations, including fractional advection diffusion equation and Riesz fractional diffusion equation. The second order finite difference scheme is used to discretize the space fractional derivative and the Crank-Nicolson procedure to the time derivative. We theoretically prove and numerically verify that the presented numerical methods are unconditionally stable and second order convergent in both space and time directions. In particular, for the Riesz fractional dif- fusion equation, the idea of reducing the splitting error is used to further improve the algorithm, and the unconditional stability and convergency are also strictly proved and numerically verified for the improved scheme.
基金We appreciate the detailed suggestions and comments provided by the editor and the anonymous reviewers. Several research programs supported the work presented in this article: the National Basic Research Program of China (No. 2015CB954100), the National Natural Science Foundation of China (Grant No. 41306078), and the Priority Academic Program Development of Jiangsu Higher Education Institutions (Grant No. 1411109012).
文摘A three-dimensional hydrodynamic model is presented which combines a terrain-following vertical coordinate with a horizontally orthogonal curvilinear coordinate system to fit the complex bottom topography and coastlines near estuaries, continental shelves, and harbors. To solve the governing equations more efficiently, we improve the alternating direction implicit method, which is extensively used in the numerical modeling of horizontal two-dimensional shallow water equations, and extend it to a three-dimensional tidal model with relatively little computational effort. Through several test cases and realistic applications, as presented in the paper, it can be demonstrated that the model is capable of simulating the periodic to-and-fro currents, wind-driven flow, Ekman spirals, and tidal currents in the near-shore region.
基金NSF of China[grant number:11371157]Natural Science Foundation of Anhui Higher Education Institutions of China[grant number:KJ2016A492]Natural Science Foundation of Bozhou College[grant number:BSKY201426,BSKY201535].
文摘In this paper,we study a new numerical technique for a class of 2D nonlinear fractional diffusion-wave equations with the Caputo-type temporal derivative and Riesz-type spatial derivative.Galerkin finite element scheme is used for the discretization in the spatial direction,and the temporal component is discretized by a new alternating direction implicit(ADI)method.Next,we strictly prove that the numerical method is stable and convergent.Finally,to confirm our theoretical analysis,some numerical examples in 2D space are presented.