A novel algorithm, i.e. the fast alternating direction method of multipliers (ADMM), is applied to solve the classical total-variation ( TV )-based model for image reconstruction. First, the TV-based model is refo...A novel algorithm, i.e. the fast alternating direction method of multipliers (ADMM), is applied to solve the classical total-variation ( TV )-based model for image reconstruction. First, the TV-based model is reformulated as a linear equality constrained problem where the objective function is separable. Then, by introducing the augmented Lagrangian function, the two variables are alternatively minimized by the Gauss-Seidel idea. Finally, the dual variable is updated. Because the approach makes full use of the special structure of the problem and decomposes the original problem into several low-dimensional sub-problems, the per iteration computational complexity of the approach is dominated by two fast Fourier transforms. Elementary experimental results indicate that the proposed approach is more stable and efficient compared with some state-of-the-art algorithms.展开更多
Electrical capacitance tomography(ECT)has been applied to two-phase flow measurement in recent years.Image reconstruction algorithms play an important role in the successful applications of ECT.To solve the ill-posed ...Electrical capacitance tomography(ECT)has been applied to two-phase flow measurement in recent years.Image reconstruction algorithms play an important role in the successful applications of ECT.To solve the ill-posed and nonlinear inverse problem of ECT image reconstruction,a new ECT image reconstruction method based on fast linearized alternating direction method of multipliers(FLADMM)is proposed in this paper.On the basis of theoretical analysis of compressed sensing(CS),the data acquisition of ECT is regarded as a linear measurement process of permittivity distribution signal of pipe section.A new measurement matrix is designed and L1 regularization method is used to convert ECT inverse problem to a convex relaxation problem which contains prior knowledge.A new fast alternating direction method of multipliers which contained linearized idea is employed to minimize the objective function.Simulation data and experimental results indicate that compared with other methods,the quality and speed of reconstructed images are markedly improved.Also,the dynamic experimental results indicate that the proposed algorithm can ful fill the real-time requirement of ECT systems in the application.展开更多
The task of dividing corrupted-data into their respective subspaces can be well illustrated,both theoretically and numerically,by recovering low-rank and sparse-column components of a given matrix.Generally,it can be ...The task of dividing corrupted-data into their respective subspaces can be well illustrated,both theoretically and numerically,by recovering low-rank and sparse-column components of a given matrix.Generally,it can be characterized as a matrix and a 2,1-norm involved convex minimization problem.However,solving the resulting problem is full of challenges due to the non-smoothness of the objective function.One of the earliest solvers is an 3-block alternating direction method of multipliers(ADMM)which updates each variable in a Gauss-Seidel manner.In this paper,we present three variants of ADMM for the 3-block separable minimization problem.More preciously,whenever one variable is derived,the resulting problems can be regarded as a convex minimization with 2 blocks,and can be solved immediately using the standard ADMM.If the inner iteration loops only once,the iterative scheme reduces to the ADMM with updates in a Gauss-Seidel manner.If the solution from the inner iteration is assumed to be exact,the convergence can be deduced easily in the literature.The performance comparisons with a couple of recently designed solvers illustrate that the proposed methods are effective and competitive.展开更多
This paper investigates the distributed model predictive control(MPC)problem of linear systems where the network topology is changeable by the way of inserting new subsystems,disconnecting existing subsystems,or merel...This paper investigates the distributed model predictive control(MPC)problem of linear systems where the network topology is changeable by the way of inserting new subsystems,disconnecting existing subsystems,or merely modifying the couplings between different subsystems.To equip live systems with a quick response ability when modifying network topology,while keeping a satisfactory dynamic performance,a novel reconfiguration control scheme based on the alternating direction method of multipliers(ADMM)is presented.In this scheme,the local controllers directly influenced by the structure realignment are redesigned in the reconfiguration control.Meanwhile,by employing the powerful ADMM algorithm,the iterative formulas for solving the reconfigured optimization problem are obtained,which significantly accelerate the computation speed and ensure a timely output of the reconfigured optimal control response.Ultimately,the presented reconfiguration scheme is applied to the level control of a benchmark four-tank plant to illustrate its effectiveness and main characteristics.展开更多
In this paper, a distributed algorithm is proposed to solve a kind of multi-objective optimization problem based on the alternating direction method of multipliers. Compared with the centralized algorithms, this algor...In this paper, a distributed algorithm is proposed to solve a kind of multi-objective optimization problem based on the alternating direction method of multipliers. Compared with the centralized algorithms, this algorithm does not need a central node. Therefore, it has the characteristics of low communication burden and high privacy. In addition, numerical experiments are provided to validate the effectiveness of the proposed algorithm.展开更多
The Alternating Direction Multiplier Method (ADMM) is widely used in various fields, and different variables are customized in the literature for different application scenarios [1] [2] [3] [4]. Among them, the linear...The Alternating Direction Multiplier Method (ADMM) is widely used in various fields, and different variables are customized in the literature for different application scenarios [1] [2] [3] [4]. Among them, the linearized alternating direction multiplier method (LADMM) has received extensive attention because of its effectiveness and ease of implementation. This paper mainly discusses the application of ADMM in dictionary learning (non-convex problem). Many numerical experiments show that to achieve higher convergence accuracy, the convergence speed of ADMM is slower, especially near the optimal solution. Therefore, we introduce the linearized alternating direction multiplier method (LADMM) to accelerate the convergence speed of ADMM. Specifically, the problem is solved by linearizing the quadratic term of the subproblem, and the convergence of the algorithm is proved. Finally, there is a brief summary of the full text.展开更多
A modified alternating direction implicit algorithm is proposed to solve the full-vectorial finite-difference beam propagation method formulation based on H fields. The cross-coupling terms are neglected in the first ...A modified alternating direction implicit algorithm is proposed to solve the full-vectorial finite-difference beam propagation method formulation based on H fields. The cross-coupling terms are neglected in the first sub-step, but evaluated and doubly used in the second sub-step. The order of two sub-steps is reversed for each transverse magnetic field component so that the cross-coupling terms are always expressed in implicit form, thus the calculation is very efficient and stable. Moreover, an improved six-point finite-difference scheme with high accuracy independent of specific structures of waveguide is also constructed to approximate the cross-coupling terms along the transverse directions. The imaginary-distance procedure is used to assess the validity and utility of the present method. The field patterns and the normalized propagation constants of the fundamental mode for a buried rectangular waveguide and a rib waveguide are presented. Solutions are in excellent agreement with the benchmark results from the modal transverse resonance method.展开更多
In practice,simultaneous impact localization and time history reconstruction can hardly be achieved,due to the illposed and under-determined problems induced by the constrained and harsh measuring conditions.Although ...In practice,simultaneous impact localization and time history reconstruction can hardly be achieved,due to the illposed and under-determined problems induced by the constrained and harsh measuring conditions.Although l_(1) regularization can be used to obtain sparse solutions,it tends to underestimate solution amplitudes as a biased estimator.To address this issue,a novel impact force identification method with l_(p) regularization is proposed in this paper,using the alternating direction method of multipliers(ADMM).By decomposing the complex primal problem into sub-problems solvable in parallel via proximal operators,ADMM can address the challenge effectively.To mitigate the sensitivity to regularization parameters,an adaptive regularization parameter is derived based on the K-sparsity strategy.Then,an ADMM-based sparse regularization method is developed,which is capable of handling l_(p) regularization with arbitrary p values using adaptively-updated parameters.The effectiveness and performance of the proposed method are validated on an aircraft skin-like composite structure.Additionally,an investigation into the optimal p value for achieving high-accuracy solutions via l_(p) regularization is conducted.It turns out that l_(0.6)regularization consistently yields sparser and more accurate solutions for impact force identification compared to the classic l_(1) regularization method.The impact force identification method proposed in this paper can simultaneously reconstruct impact time history with high accuracy and accurately localize the impact using an under-determined sensor configuration.展开更多
Combined heat and power dispatch(CHPD)opens a new window for increasing operational flexibility and reducing wind power curtailment.Electric power and district heating systems are independently controlled by different...Combined heat and power dispatch(CHPD)opens a new window for increasing operational flexibility and reducing wind power curtailment.Electric power and district heating systems are independently controlled by different system operators;therefore,a decentralized solution paradigm is necessary for CHPD,in which only minor boundary information is required to be exchanged via a communication network.However,a nonideal communication environment with noise could lead to divergence or incorrect solutions of decentralized algorithms.To bridge this gap,this paper proposes a stochastic accelerated alternating direction method of multipliers(SA-ADMM)for hedging communication noise in CHPD.This algorithm provides a general framework to address more types of constraint sets and separable objective functions than the existing stochastic ADMM.Different from the single noise sources considered in the existing stochastic approximation methods,communication noise from multiple sources is addressed in both the local calculation and the variable update stages.Case studies of two test systems validate the effectiveness and robustness of the proposed SAADMM.展开更多
In this paper,we propose a new stopping criterion for Eckstein and Bertsekas’s generalized alternating direction method of multipliers.The stopping criterion is easy to verify,and the computational cost is much less ...In this paper,we propose a new stopping criterion for Eckstein and Bertsekas’s generalized alternating direction method of multipliers.The stopping criterion is easy to verify,and the computational cost is much less than the classical stopping criterion in the highly influential paper by Boyd et al.(Found Trends Mach Learn 3(1):1–122,2011).展开更多
The alternating direction method of multipliers(ADMM)is one of the most successful and powerful methods for separable minimization optimization.Based on the idea of symmetric ADMM in two-block optimization,we add an u...The alternating direction method of multipliers(ADMM)is one of the most successful and powerful methods for separable minimization optimization.Based on the idea of symmetric ADMM in two-block optimization,we add an updating formula for the Lagrange multiplier without restricting its position for multiblock one.Then,combining with the Bregman distance,in this work,a Bregman-style partially symmetric ADMM is presented for nonconvex multi-block optimization with linear constraints,and the Lagrange multiplier is updated twice with different relaxation factors in the iteration scheme.Under the suitable conditions,the global convergence,strong convergence and convergence rate of the presented method are analyzed and obtained.Finally,some preliminary numerical results are reported to support the correctness of the theoretical assertions,and these show that the presented method is numerically effective.展开更多
Alternating direction method of multipliers(ADMM)receives much attention in the recent years due to various demands from machine learning and big data related optimization.In 2013,Ouyang et al.extend the ADMM to the s...Alternating direction method of multipliers(ADMM)receives much attention in the recent years due to various demands from machine learning and big data related optimization.In 2013,Ouyang et al.extend the ADMM to the stochastic setting for solving some stochastic optimization problems,inspired by the structural risk minimization principle.In this paper,we consider a stochastic variant of symmetric ADMM,named symmetric stochastic linearized ADMM(SSL-ADMM).In particular,using the framework of variational inequality,we analyze the convergence properties of SSL-ADMM.Moreover,we show that,with high probability,SSL-ADMM has O((ln N)·N^(-1/2))constraint violation bound and objective error bound for convex problems,and has O((ln N)^(2)·N^(-1))constraint violation bound and objective error bound for strongly convex problems,where N is the iteration number.Symmetric ADMM can improve the algorithmic performance compared to classical ADMM,numerical experiments for statistical machine learning show that such an improvement is also present in the stochastic setting.展开更多
针对目标函数中包含耦合函数H(x,y)的非凸非光滑极小化问题,提出了一种线性惯性交替乘子方向法(Linear Inertial Alternating Direction Method of Multipliers,LIADMM)。为了方便子问题的求解,对目标函数中的耦合函数H(x,y)进行线性化...针对目标函数中包含耦合函数H(x,y)的非凸非光滑极小化问题,提出了一种线性惯性交替乘子方向法(Linear Inertial Alternating Direction Method of Multipliers,LIADMM)。为了方便子问题的求解,对目标函数中的耦合函数H(x,y)进行线性化处理,并在x-子问题中引入惯性效应。在适当的假设条件下,建立了算法的全局收敛性;同时引入满足Kurdyka-Lojasiewicz不等式的辅助函数,验证了算法的强收敛性。通过两个数值实验表明,引入惯性效应的算法比没有惯性效应的算法收敛性能更好。展开更多
针对工业机械设备实时监测中不可控因素导致的振动信号数据缺失问题,提出一种基于自适应二次临近项交替方向乘子算法(adaptive quadratic proximity-alternating direction method of multipliers, AQ-ADMM)的压缩感知缺失信号重构方法...针对工业机械设备实时监测中不可控因素导致的振动信号数据缺失问题,提出一种基于自适应二次临近项交替方向乘子算法(adaptive quadratic proximity-alternating direction method of multipliers, AQ-ADMM)的压缩感知缺失信号重构方法。AQ-ADMM算法在经典交替方向乘子算法算法迭代过程中添加二次临近项,且能够自适应选取惩罚参数。首先在数据中心建立信号参考数据库用于构造初始字典,然后将K-奇异值分解(K-singular value decomposition, K-SVD)字典学习算法和AQ-ADMM算法结合重构缺失信号。对仿真信号和两种真实轴承信号数据集添加高斯白噪声后作为样本,试验结果表明当信号压缩率在50%~70%时,所提方法性能指标明显优于其它传统方法,在重构信号的同时实现了对含缺失数据机械振动信号的快速精确修复。展开更多
基金The Scientific Research Foundation of Nanjing University of Posts and Telecommunications(No.NY210049)
文摘A novel algorithm, i.e. the fast alternating direction method of multipliers (ADMM), is applied to solve the classical total-variation ( TV )-based model for image reconstruction. First, the TV-based model is reformulated as a linear equality constrained problem where the objective function is separable. Then, by introducing the augmented Lagrangian function, the two variables are alternatively minimized by the Gauss-Seidel idea. Finally, the dual variable is updated. Because the approach makes full use of the special structure of the problem and decomposes the original problem into several low-dimensional sub-problems, the per iteration computational complexity of the approach is dominated by two fast Fourier transforms. Elementary experimental results indicate that the proposed approach is more stable and efficient compared with some state-of-the-art algorithms.
基金Supported by the National Natural Science Foundation of China(61203021)the Key Science and Technology Program of Liaoning Province(2011216011)+1 种基金the Natural Science Foundation of Liaoning Province(2013020024)the Program for Liaoning Excellent Talents in Universities(LJQ2015061)
文摘Electrical capacitance tomography(ECT)has been applied to two-phase flow measurement in recent years.Image reconstruction algorithms play an important role in the successful applications of ECT.To solve the ill-posed and nonlinear inverse problem of ECT image reconstruction,a new ECT image reconstruction method based on fast linearized alternating direction method of multipliers(FLADMM)is proposed in this paper.On the basis of theoretical analysis of compressed sensing(CS),the data acquisition of ECT is regarded as a linear measurement process of permittivity distribution signal of pipe section.A new measurement matrix is designed and L1 regularization method is used to convert ECT inverse problem to a convex relaxation problem which contains prior knowledge.A new fast alternating direction method of multipliers which contained linearized idea is employed to minimize the objective function.Simulation data and experimental results indicate that compared with other methods,the quality and speed of reconstructed images are markedly improved.Also,the dynamic experimental results indicate that the proposed algorithm can ful fill the real-time requirement of ECT systems in the application.
基金Supported by the National Natural Science Foundation of China(Grant No.11971149,11871381)Natural Science Foundation of Henan Province for Youth(Grant No.202300410146)。
文摘The task of dividing corrupted-data into their respective subspaces can be well illustrated,both theoretically and numerically,by recovering low-rank and sparse-column components of a given matrix.Generally,it can be characterized as a matrix and a 2,1-norm involved convex minimization problem.However,solving the resulting problem is full of challenges due to the non-smoothness of the objective function.One of the earliest solvers is an 3-block alternating direction method of multipliers(ADMM)which updates each variable in a Gauss-Seidel manner.In this paper,we present three variants of ADMM for the 3-block separable minimization problem.More preciously,whenever one variable is derived,the resulting problems can be regarded as a convex minimization with 2 blocks,and can be solved immediately using the standard ADMM.If the inner iteration loops only once,the iterative scheme reduces to the ADMM with updates in a Gauss-Seidel manner.If the solution from the inner iteration is assumed to be exact,the convergence can be deduced easily in the literature.The performance comparisons with a couple of recently designed solvers illustrate that the proposed methods are effective and competitive.
基金the National Natural Science Foundation of China(61833012,61773162,61590924)the Natural Science Foundation of Shanghai(18ZR1420000)。
文摘This paper investigates the distributed model predictive control(MPC)problem of linear systems where the network topology is changeable by the way of inserting new subsystems,disconnecting existing subsystems,or merely modifying the couplings between different subsystems.To equip live systems with a quick response ability when modifying network topology,while keeping a satisfactory dynamic performance,a novel reconfiguration control scheme based on the alternating direction method of multipliers(ADMM)is presented.In this scheme,the local controllers directly influenced by the structure realignment are redesigned in the reconfiguration control.Meanwhile,by employing the powerful ADMM algorithm,the iterative formulas for solving the reconfigured optimization problem are obtained,which significantly accelerate the computation speed and ensure a timely output of the reconfigured optimal control response.Ultimately,the presented reconfiguration scheme is applied to the level control of a benchmark four-tank plant to illustrate its effectiveness and main characteristics.
文摘In this paper, a distributed algorithm is proposed to solve a kind of multi-objective optimization problem based on the alternating direction method of multipliers. Compared with the centralized algorithms, this algorithm does not need a central node. Therefore, it has the characteristics of low communication burden and high privacy. In addition, numerical experiments are provided to validate the effectiveness of the proposed algorithm.
文摘The Alternating Direction Multiplier Method (ADMM) is widely used in various fields, and different variables are customized in the literature for different application scenarios [1] [2] [3] [4]. Among them, the linearized alternating direction multiplier method (LADMM) has received extensive attention because of its effectiveness and ease of implementation. This paper mainly discusses the application of ADMM in dictionary learning (non-convex problem). Many numerical experiments show that to achieve higher convergence accuracy, the convergence speed of ADMM is slower, especially near the optimal solution. Therefore, we introduce the linearized alternating direction multiplier method (LADMM) to accelerate the convergence speed of ADMM. Specifically, the problem is solved by linearizing the quadratic term of the subproblem, and the convergence of the algorithm is proved. Finally, there is a brief summary of the full text.
文摘A modified alternating direction implicit algorithm is proposed to solve the full-vectorial finite-difference beam propagation method formulation based on H fields. The cross-coupling terms are neglected in the first sub-step, but evaluated and doubly used in the second sub-step. The order of two sub-steps is reversed for each transverse magnetic field component so that the cross-coupling terms are always expressed in implicit form, thus the calculation is very efficient and stable. Moreover, an improved six-point finite-difference scheme with high accuracy independent of specific structures of waveguide is also constructed to approximate the cross-coupling terms along the transverse directions. The imaginary-distance procedure is used to assess the validity and utility of the present method. The field patterns and the normalized propagation constants of the fundamental mode for a buried rectangular waveguide and a rib waveguide are presented. Solutions are in excellent agreement with the benchmark results from the modal transverse resonance method.
基金Supported by National Natural Science Foundation of China (Grant Nos.52305127,52075414)China Postdoctoral Science Foundation (Grant No.2021M702595)。
文摘In practice,simultaneous impact localization and time history reconstruction can hardly be achieved,due to the illposed and under-determined problems induced by the constrained and harsh measuring conditions.Although l_(1) regularization can be used to obtain sparse solutions,it tends to underestimate solution amplitudes as a biased estimator.To address this issue,a novel impact force identification method with l_(p) regularization is proposed in this paper,using the alternating direction method of multipliers(ADMM).By decomposing the complex primal problem into sub-problems solvable in parallel via proximal operators,ADMM can address the challenge effectively.To mitigate the sensitivity to regularization parameters,an adaptive regularization parameter is derived based on the K-sparsity strategy.Then,an ADMM-based sparse regularization method is developed,which is capable of handling l_(p) regularization with arbitrary p values using adaptively-updated parameters.The effectiveness and performance of the proposed method are validated on an aircraft skin-like composite structure.Additionally,an investigation into the optimal p value for achieving high-accuracy solutions via l_(p) regularization is conducted.It turns out that l_(0.6)regularization consistently yields sparser and more accurate solutions for impact force identification compared to the classic l_(1) regularization method.The impact force identification method proposed in this paper can simultaneously reconstruct impact time history with high accuracy and accurately localize the impact using an under-determined sensor configuration.
基金supported by the Key-Area Research and Development Program of Guangdong Province under Grant 2020B010166004the National Natural Science Foundation of China under Grant 52177086+2 种基金the Guangdong Basic and Applied Basic Research Foundation under Grant 2019A1515011408the Science and Technology Program of Guangzhou under Grant 201904010215the Talent Recruitment Project of Guangdong under Grant 2017GC010467.
文摘Combined heat and power dispatch(CHPD)opens a new window for increasing operational flexibility and reducing wind power curtailment.Electric power and district heating systems are independently controlled by different system operators;therefore,a decentralized solution paradigm is necessary for CHPD,in which only minor boundary information is required to be exchanged via a communication network.However,a nonideal communication environment with noise could lead to divergence or incorrect solutions of decentralized algorithms.To bridge this gap,this paper proposes a stochastic accelerated alternating direction method of multipliers(SA-ADMM)for hedging communication noise in CHPD.This algorithm provides a general framework to address more types of constraint sets and separable objective functions than the existing stochastic ADMM.Different from the single noise sources considered in the existing stochastic approximation methods,communication noise from multiple sources is addressed in both the local calculation and the variable update stages.Case studies of two test systems validate the effectiveness and robustness of the proposed SAADMM.
文摘In this paper,we propose a new stopping criterion for Eckstein and Bertsekas’s generalized alternating direction method of multipliers.The stopping criterion is easy to verify,and the computational cost is much less than the classical stopping criterion in the highly influential paper by Boyd et al.(Found Trends Mach Learn 3(1):1–122,2011).
基金supported by the National Natural Science Foundation of China (No.12171106)the Natural Science Foundation of Guangxi Province (No.2020GXNSFDA238017)。
文摘The alternating direction method of multipliers(ADMM)is one of the most successful and powerful methods for separable minimization optimization.Based on the idea of symmetric ADMM in two-block optimization,we add an updating formula for the Lagrange multiplier without restricting its position for multiblock one.Then,combining with the Bregman distance,in this work,a Bregman-style partially symmetric ADMM is presented for nonconvex multi-block optimization with linear constraints,and the Lagrange multiplier is updated twice with different relaxation factors in the iteration scheme.Under the suitable conditions,the global convergence,strong convergence and convergence rate of the presented method are analyzed and obtained.Finally,some preliminary numerical results are reported to support the correctness of the theoretical assertions,and these show that the presented method is numerically effective.
基金Supported by National Natural Science Foundation of China (61662036)。
文摘Alternating direction method of multipliers(ADMM)receives much attention in the recent years due to various demands from machine learning and big data related optimization.In 2013,Ouyang et al.extend the ADMM to the stochastic setting for solving some stochastic optimization problems,inspired by the structural risk minimization principle.In this paper,we consider a stochastic variant of symmetric ADMM,named symmetric stochastic linearized ADMM(SSL-ADMM).In particular,using the framework of variational inequality,we analyze the convergence properties of SSL-ADMM.Moreover,we show that,with high probability,SSL-ADMM has O((ln N)·N^(-1/2))constraint violation bound and objective error bound for convex problems,and has O((ln N)^(2)·N^(-1))constraint violation bound and objective error bound for strongly convex problems,where N is the iteration number.Symmetric ADMM can improve the algorithmic performance compared to classical ADMM,numerical experiments for statistical machine learning show that such an improvement is also present in the stochastic setting.
文摘随着高分辨率对地观测要求的不断提高,合成孔径雷达(Synthetic Aperture Radar,SAR)的应用将越来越广泛。针对高分辨率SAR成像存在数据量大、存储难度高、计算时间长等问题,目前常用的解决方法是在SAR成像模型中引入压缩感知(Compressed Sensing,CS)的方法降低采样率和数据量。通常使用单一的正则化作为约束条件,可以抑制点目标旁瓣,实现点目标特征增强,但是观测场景中可能存在多种目标类型,因此使用单一正则化约束难以满足多种特征增强的要求。本文提出了一种基于复合正则化的稀疏高分辨SAR成像方法,通过压缩感知降低数据量,并使用多种正则化的线性组合作为约束条件,增强观测场景中不同类型目标的特征,实现复杂场景中高分辨率对地观测的要求。该方法在稀疏SAR成像模型中引入非凸正则化和全变分(Total Variation,TV)正则化作为约束条件,减小稀疏重构误差、增强区域目标的特征,降低噪声对成像结果的影响,提高成像质量;采用改进的交替方向乘子法(Alternating Direction Method of Multipliers,ADMM)实现复合正则化约束的求解,减少计算时间、快速重构图像;使用方位距离解耦算子代替观测矩阵及其共轭转置,进一步降低计算复杂度。仿真和实测数据实验表明,本文所提算法可以对点目标和区域目标进行特征增强,减小计算复杂度,提高收敛性能,实现快速高分辨的图像重构。
文摘针对目标函数中包含耦合函数H(x,y)的非凸非光滑极小化问题,提出了一种线性惯性交替乘子方向法(Linear Inertial Alternating Direction Method of Multipliers,LIADMM)。为了方便子问题的求解,对目标函数中的耦合函数H(x,y)进行线性化处理,并在x-子问题中引入惯性效应。在适当的假设条件下,建立了算法的全局收敛性;同时引入满足Kurdyka-Lojasiewicz不等式的辅助函数,验证了算法的强收敛性。通过两个数值实验表明,引入惯性效应的算法比没有惯性效应的算法收敛性能更好。
文摘针对工业机械设备实时监测中不可控因素导致的振动信号数据缺失问题,提出一种基于自适应二次临近项交替方向乘子算法(adaptive quadratic proximity-alternating direction method of multipliers, AQ-ADMM)的压缩感知缺失信号重构方法。AQ-ADMM算法在经典交替方向乘子算法算法迭代过程中添加二次临近项,且能够自适应选取惩罚参数。首先在数据中心建立信号参考数据库用于构造初始字典,然后将K-奇异值分解(K-singular value decomposition, K-SVD)字典学习算法和AQ-ADMM算法结合重构缺失信号。对仿真信号和两种真实轴承信号数据集添加高斯白噪声后作为样本,试验结果表明当信号压缩率在50%~70%时,所提方法性能指标明显优于其它传统方法,在重构信号的同时实现了对含缺失数据机械振动信号的快速精确修复。