The goal of this paper is to achieve a computational model and corresponding efficient algorithm for obtaining a sparse representation of the fitting surface to the given scattered data. The basic idea of the model is...The goal of this paper is to achieve a computational model and corresponding efficient algorithm for obtaining a sparse representation of the fitting surface to the given scattered data. The basic idea of the model is to utilize the principal shift invariant(PSI) space and the l_1 norm minimization. In order to obtain different sparsity of the approximation solution, the problem is represented as a multilevel LASSO(MLASSO)model with different regularization parameters. The MLASSO model can be solved efficiently by the alternating direction method of multipliers. Numerical experiments indicate that compared to the AGLASSO model and the basic MBA algorithm, the MLASSO model can provide an acceptable compromise between the minimization of the data mismatch term and the sparsity of the solution. Moreover, the solution by the MLASSO model can reflect the regions of the underlying surface where high gradients occur.展开更多
基金supported by National Natural Science Foundation of China(Grant Nos.11526098,11001037,11290143 and 11471066)the Research Foundation for Advanced Talents of Jiangsu University(Grant No.14JDG034)+1 种基金the Natural Science Foundation of Jiangsu Province(Grant No.BK20160487)the Fundamental Research Funds for the Central Universities(Grant No.DUT15LK44)
文摘The goal of this paper is to achieve a computational model and corresponding efficient algorithm for obtaining a sparse representation of the fitting surface to the given scattered data. The basic idea of the model is to utilize the principal shift invariant(PSI) space and the l_1 norm minimization. In order to obtain different sparsity of the approximation solution, the problem is represented as a multilevel LASSO(MLASSO)model with different regularization parameters. The MLASSO model can be solved efficiently by the alternating direction method of multipliers. Numerical experiments indicate that compared to the AGLASSO model and the basic MBA algorithm, the MLASSO model can provide an acceptable compromise between the minimization of the data mismatch term and the sparsity of the solution. Moreover, the solution by the MLASSO model can reflect the regions of the underlying surface where high gradients occur.