期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Geometric Proof of Riemann Conjecture 被引量:2
1
作者 Chuanmiao Chen 《Advances in Pure Mathematics》 2021年第4期334-345,共12页
This paper proves Riemann conjecture (RH), <em>i.e</em>., that all the zeros in critical region of Riemann <span style="white-space:nowrap;"><em><span style="white-space:nowra... This paper proves Riemann conjecture (RH), <em>i.e</em>., that all the zeros in critical region of Riemann <span style="white-space:nowrap;"><em><span style="white-space:nowrap;"><em>ξ</em><span style="white-space:normal;"> </span></span></em></span>-function lie on symmetric line <span style="white-space:nowrap;"><em>σ</em></span> =1/2 . Its proof is based on two important properties: the symmetry and alternative oscillation for <span style="white-space:nowrap;"><em><em>ξ</em><span style="white-space:normal;"> </span></em>=<em> u </em>+<em> iv</em></span> . Denote <img src="Edit_317839cd-bad0-44d8-b081-c473bcb336f1.png" width="170" height="15" alt="" />. Riemann proved that u is real and <em>v</em> <span style="white-space:nowrap;">≡ </span>0 for <span style="white-space:nowrap;"><em><span style="white-space:nowrap;">β</span></em> =0</span> (the symmetry). We prove that the zeros of u and v for <em>β</em> <span style="white-space:nowrap;">> 0</span> are alternative, so <span style="white-space:nowrap;"><em>u</em> (<em>t</em>,0)</span> is the single peak. A geometric model was proposed. <img src="Edit_27688061-de42-4bce-ad80-6fb3dd1e3d4b.png" width="85" height="27" alt="" /> is called the root-interval of <em>u </em>(<em>t</em>,<em style="white-space:normal;">β</em>) , if |<span style="white-space:nowrap;"><em>u</em>| <em>> </em>0</span> is inside <em>I</em><sub><em>j</em> </sub>and <span style="white-space:nowrap;"><em>u</em> = 0</span> is at its two ends. If |<em>u</em> (<em style="white-space:normal;">t</em><span style="white-space:normal;">,</span><em style="white-space:normal;">β</em>)| has only one peak on each <em style="white-space:normal;">I</em><sub style="white-space:normal;"><em>j</em></sub>, which is called the single peak, else called multiple peaks (it will be proved that the multiple peaks do not exist). The important expressions of u and v for <em style="white-space:normal;">β</em><span style="white-space:normal;"> </span>> 0 were derived. By <img src="Edit_b6369c2e-6a6d-4e1a-8a75-00d743cecaf1.png" width="240" height="28" alt="" />, the peak <em style="white-space:normal;">u </em><span style="white-space:normal;">(</span><em style="white-space:normal;">t</em><span style="white-space:normal;">,</span><em style="white-space:normal;">β</em><span style="white-space:normal;">)</span> will develop toward its convex direction. Besides, <em style="white-space:normal;">u<sub>t</sub> </em><span style="white-space:normal;">(</span><em style="white-space:normal;">t</em><span style="white-space:normal;">,</span><em style="white-space:normal;">β</em><span style="white-space:normal;">)</span> has opposite signs at two ends <em>t</em> = <em>t<sub>j</sub></em><sub> </sub>, <em>t<sub>j+1</sub></em> of <em>I<sub>j </sub></em>, <img src="Edit_be3f0d63-1d24-4165-ac2c-141c9a47d1c8.png" width="145" height="28" alt="" /> also does, then there exists some inner point <span style="white-space:nowrap;"><em>t</em>′</span> such that <span style="white-space:nowrap;"><em>v</em><em></em> (<em>t′</em>,<em>β</em>) = 0</span>. Therefore {|<em>u</em>|,|<em>v</em>|/<em>β</em>} in <em>I<sub>j</sub></em><sub> </sub>form a peak-valley structure such that <img src="Edit_70bb530a-662f-464a-b3c8-4d5625fbf679.png" width="180" height="22" alt="" /> has positive lower bound independent of <em>t</em> <span style="white-space:nowrap;">∈ </span><em>I<sub>j</sub></em><sub> </sub>(<em>i.e</em>. RH holds in <em style="white-space:normal;">I<sub>j</sub></em><sub style="white-space:normal;"> </sub>). As <em style="white-space:normal;">u </em><span style="white-space:normal;">(</span><em style="white-space:normal;">t</em><span style="white-space:normal;">,</span><em style="white-space:normal;">β</em><span style="white-space:normal;">)</span> does not have the finite condensation point (unless <span style="white-space:nowrap;"><em>u</em> = <em>cons</em><em>t</em>.</span>), any finite t surely falls in some <em style="white-space:normal;">I<sub>j</sub></em><sub style="white-space:normal;"> </sub>, then <img src="Edit_166a9981-aac8-476b-a29a-496763297b35.png" width="50" height="23" alt="" /> holds for any t (RH is proved). Our previous paper “Local geometric proof of Riemann conjecture” (APM, V.10:8, 2020) has two defects, this paper has amended these defects and given a complete proof of RH. 展开更多
关键词 Riemann Conjecture Geometric Analysis SYMMETRY alternative oscillation Single Peak Peak-Valley Structure
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部