The role of nano-SiO 2 and ultra-fine boron carbide on the properties of alumina-graphite materials was investigated. The study showed that the ultra-fine boron carbide added modified the microstructure of residual c...The role of nano-SiO 2 and ultra-fine boron carbide on the properties of alumina-graphite materials was investigated. The study showed that the ultra-fine boron carbide added modified the microstructure of residual carbon and promoted the chemical bond between residual carbon from phenolic resin and flake graphite. The carbon white could strengthen the residual carbon from phenolic resin. These two additives improved the mechanical properties of AG refractories at both room temperature and high temperature, and thermal shock resistance was improved noticeably. When the two additives were doped together, carbon white could retard the evaporation of B 2O 3. Thermal shock resistance was guaranteed with a smaller amount of ultra-fine boron carbide.展开更多
It is possible to enhance the high tempera- ture oxidationresistance and thus prolong the life time of non-oxide refractoriesby the application of oxide coating. In this work, silicon nitridebonded silicon carbide ref...It is possible to enhance the high tempera- ture oxidationresistance and thus prolong the life time of non-oxide refractoriesby the application of oxide coating. In this work, silicon nitridebonded silicon carbide refracto- Ries were coated with alumina usingthe plasma spraying Technique. X-ray diffraction showed γ-Al_2O_3 tobe the Dominent phase in the as-sprayed alumina coatings.展开更多
This standard specifies the classification,dimensions, technical requirement, testing method.inspection principle, package, marking, packing,transportation, storage and quality certificate.
The corrosion of refractories results from reactive transport,namely,transport of agents and chemical reactions of these agents with impregnated medium. On one hand,the transport involves either diffusion or impregnat...The corrosion of refractories results from reactive transport,namely,transport of agents and chemical reactions of these agents with impregnated medium. On one hand,the transport involves either diffusion or impregnation depending on the state of the corrosive agents and the microstructure of the host media. On the other hand,chemical reactions may be very numerous and complex.This study focused on the reactive impregnation of Al2O3- CaO slag into porous high alumina refractory. The transport properties of the refractory material were identified by means of a dedicated capillary rising test. Chemical reactions between the solid high alumina skeleton and Al2O3- CaO slag involve successive dissolution / precipitation mechanisms forming aluminates of lime. Contrary to the thermodynamic properties of the binary system,the kinetics of these solid / liquid reactions is not well known.Corrosion tests associated with the quenching method,XRD analyses were performed for a better understanding of the kinetics. The results of this study open up a coupling approach for predicting the corrosion wear of refractory.展开更多
Three kinds of composite alumina refractories were prepared with tabular alumina (3-1 and 1-0 mm) as aggregates,tabular alumina powder,α-Al2 O3 micropowder,and Si powder as matrix,adding 3 mass% hexagonal boron ni...Three kinds of composite alumina refractories were prepared with tabular alumina (3-1 and 1-0 mm) as aggregates,tabular alumina powder,α-Al2 O3 micropowder,and Si powder as matrix,adding 3 mass% hexagonal boron nitride (h-BN),3 mass% flake graphite and 10 mass% flake graphite,respectively.Cold physical properties,hot modulus of rupture,oxidation resistance,thermal shock resistance and slag corrosion resistance of the specimens were compared.The results show that:(1) physical properties and hot modulus of rupture of Al2 O3-h-BN refractories are slightly different from those of low carbon Al2 O3-C refractories,but better than those of traditional Al2 O3-C refractories with 10 mass% graphite ; (2) Al2 O3-h-BN refractories have better thermal shock resistance and oxidation resistance than the carbon containing refractories,while similar slag resistance with low carbon Al2 O3-C refractories ; (3) h-BN can replace flake graphite as a starting material for the preparation of composite alumina refractories,considering the overall properties of the material.展开更多
In order to improve oxidation resistance and ther- mal shock resistance of Al2O3-C refractories, two groups of specimens were prepared with phenolic resin as binder, adding 0, 2 wt% , 4 wt% and 6 wt% commercial SiC or...In order to improve oxidation resistance and ther- mal shock resistance of Al2O3-C refractories, two groups of specimens were prepared with phenolic resin as binder, adding 0, 2 wt% , 4 wt% and 6 wt% commercial SiC or ZrO2-SiC composite powder synthesized from zircon respectively to Al2O3- C refractories, pressing at 200 MPa, drying fully at 250℃, and then carbon embedded firing at 1400℃ for 2 h. Oxidation resistance and thermal shock resistance were researched, phase composition was analyzed by XRD. The results showed that the oxidation of SiC in additives could protect carbon in specimens effectively and thus decreased the mass loss ratio and oxidation area, and improved the oxidation resistance of the specimen. Thermal shock resistance was improved owing to the micro crack toughening of ZrO2 and grain toughening of SiC. In this experiment, the specimens with 6 wt% ZrO2 -SiC composite powder or 6 wt% SiC powder had the best oxidation resistance and thermal shock resistance.展开更多
The combination of SiC and andalusite with calcium aluminate binder for castables in high corrosive gasifying environments is a promising alternative refractory system for many different slag systems. After sintering,...The combination of SiC and andalusite with calcium aluminate binder for castables in high corrosive gasifying environments is a promising alternative refractory system for many different slag systems. After sintering,a glassy protective layer has been identified. Beside the interactions of the refractories with intermediate slag also the thermomechanical properties,the thermal shock performance and the microstructure have been evaluated as a function of different binder systems.展开更多
The corrosion resistance of the Al2O3-C based refractories in melts containing titania has been studied by quasi-station immersion and rotary immersion. The corrosionrate is decreased with the addition of graphite car...The corrosion resistance of the Al2O3-C based refractories in melts containing titania has been studied by quasi-station immersion and rotary immersion. The corrosionrate is decreased with the addition of graphite carbon, and ZrO2 in the refractories . The corrosion, mechanism of Al2O3-C refractories, is. the oxidization of graphite carbon by the oxides of the melts the formation of deteriorate layer, For the Al2O3-C-ZrO2 refractories, the corrosion behavior is due to the, interaction between melts and refractories . The new compounds of FeO. SiO2, SiZrO4, FeO. 3 CaO, 2CaO. SiO2 and CaO. SiO2 are formed in the deteriorate layer.展开更多
Carbon nanotubes (CNTs) have been extensively studied over the last two decades since they possess excellent properties.CNTs have been considered as new promising reinforcements for carbon containing refractories (...Carbon nanotubes (CNTs) have been extensively studied over the last two decades since they possess excellent properties.CNTs have been considered as new promising reinforcements for carbon containing refractories (CCRs).Current research progress of the CNT-reinforced MgO-C and Al2O3-C refractories was summarized in this mini-review,and the CNT-reinforced CCRs possess remarkable mechanical properties and superior thermal shock resistance compared to CCRs without CNTs.展开更多
The paper analyzed the recycle condition and developing trend of used refractories China and other countries, irwluding research achievements of recycles of used refractories such as MgO-C bricks, Al2O3-MgO-C brics, A...The paper analyzed the recycle condition and developing trend of used refractories China and other countries, irwluding research achievements of recycles of used refractories such as MgO-C bricks, Al2O3-MgO-C brics, Al2O3-SiC-C castable and MgO-Cr2O3 bricks. Recycled refractories exhibit the same or even better properties as compared with the original. In addition, prospects for recycle of used refractories are also discusseded.展开更多
Al2O3-C refractories are widely used as functional elements like nozzles, well blocks, sliding gate plates and stoppers in the continuous casting process of steel production. Application of silicon as a metallic agent...Al2O3-C refractories are widely used as functional elements like nozzles, well blocks, sliding gate plates and stoppers in the continuous casting process of steel production. Application of silicon as a metallic agent in Al2O3-C slide gate plate production is usual. In fact, a non-oxide bond can be generated due to the reaction between silicon and carbon under reducing atmosphere in the plate matrix. This non-oxide bond can enhance the mechanical strength and abrasion resistance. In order to improve the mechanical and thermo-mechanical properties, functional additives can be aimed to lower the sinte- ring temperature and tailor the microstructure. For this reason, the effect of a special solid state sintering aid addition on the microstructure and thermo-mechanical properties of Al2O3-C slide gate plates in the presence of Si as a metallic component has been investigated. Two types of specimens were pressed at 150 MPa, tempered at 200 ℃ and fired in coke bed at 1 400 ℃ , respectively. Physical ( BD and AP ) , mechanical ( CCS and MOR ) and thermo-mechanical ( HMOR ) properties were determined; in addition, phase composition was characterized by X-ray diffraction analysis ( XRD ) and microstructure of specimens was investigated by field emission scanning electron microscopy (FESEM). Results have shown that the addition of sintering aid increased the generation of cation vacancy in Al2O3 structure which enhanced the cation diffusion and densification process ; consequently, CCS, MOR and HMOR of specimens increased drasticallywhile bulk density and apparent porosity remained un- changed.展开更多
Newly developed Al2O3-Si3N4 composite refractories used for blast furnace is introduced in this work. Al2O3-Si3N4 composite refractories attacked by alkali vapor and blast furnace slag was investigated. High performan...Newly developed Al2O3-Si3N4 composite refractories used for blast furnace is introduced in this work. Al2O3-Si3N4 composite refractories attacked by alkali vapor and blast furnace slag was investigated. High performance Al2O3-Si3N4 composite refractories was produced and used at both 2560m^3 blast furnaces of Tan-gsteel and No. 5 blast furnace of Shaosteel.展开更多
Using tabular alumina as aggregate,tabular alumina fines,reactive alumina ultra-fines,aluminum powders,silicon powders,carbon black,flake graphite,B4 C and zircon fines as matrix,low carbon Al2O3-C refractories were p...Using tabular alumina as aggregate,tabular alumina fines,reactive alumina ultra-fines,aluminum powders,silicon powders,carbon black,flake graphite,B4 C and zircon fines as matrix,low carbon Al2O3-C refractories were prepared.Influences of zircon powders additions (0,3%,5% and 7%,in mass,the same hereinafter) on properties,phase composition and microstructure were investigated.The results show that the ZrO2-nitride can be in-situ formed through carbothermal reduction and nitridation in Al2O3-C refractories.With the increase of zircon powder,the oxidation resistance of the Al2O3-C refractories improves obviously,the oxidized layer thickness decreases from 7.94 mm without zircon to 2.71 mm with 5% zircon.HMOR at 1 400 ℃ of the Al2O3-C refractories reaches the maximum 14.9 MPa when zircon addition is 5%.With the increase of zircon powder,the apparent porosity and bulk density change a little,CMOR and CCS increase.展开更多
Alumina is one of the crucial and extensively utilized refractory components.As the refractory wear due to dissolution at elevated temperatures during operation is a major threat to refractory lifespan,quantifying dis...Alumina is one of the crucial and extensively utilized refractory components.As the refractory wear due to dissolution at elevated temperatures during operation is a major threat to refractory lifespan,quantifying dissolution is important for developing cost-effective and resource-efficient refractories.This study investigated the dissolution of alumina particles in two silicate and one calcium aluminate slags at 1450,1500,and 1550°C using high-temperature confocal laser scanning microscopy(HT-CLSM).Dissolution was quantified in terms of diffusivity,with all influencing factors,including Stefan flow and bath movement,incorporated into the determination process.The trends observed in total dissolution time and diffusivity in three slags at three experimental temperatures could not be explained solely on the basis of slag basicity.Two parameters,considering the influencing factors,were introduced to explain these trends.Furthermore,the linear trend observed in Arrhenius plots of diffusivities supports the diffusivity results.Additionally,good agreement between the diffusivities of alumina in one silicate slag obtained via CLSM and rotating finger test investigations verified the reliability of the results.展开更多
The corrosion behavior of alumina-chromia refractory against two kinds of industrial slags (coal slag and iron smelting slag) at 1550℃ was investigated via thermodynamic simulations. In the proposed simulation mode...The corrosion behavior of alumina-chromia refractory against two kinds of industrial slags (coal slag and iron smelting slag) at 1550℃ was investigated via thermodynamic simulations. In the proposed simulation model, the initial slag first attacks the matrix and surface aggregates and subsequently attacks the inner aggregates. The simulation results indicate that the slag chemistry strongly affects the phase formation and corrosion behavior of the refractory brick. Greater amounts of alumina were dissolved and spinel solid phases formed when the brick interacted with iron smelting slag. These phenomena, as well as the calculated lower viscosity, may lead to much deeper penetration than that exhibited by coal slag and to more severe corrosion compared to that induced by coal slag. The thermodynamic calculations well match the experimental observations, demonstrating the efficiency of the proposed simulation model for evaluating the corrosion behavior of alumina-chromia refractory.展开更多
Five mixtures (M1 to M5) of silica-alumina geomaterials and two varieties of alumina (AP and AR) were used for the elaboration of mullite refractory materials between 1500℃ and 1600℃. An X-ray diffraction (XRD) anal...Five mixtures (M1 to M5) of silica-alumina geomaterials and two varieties of alumina (AP and AR) were used for the elaboration of mullite refractory materials between 1500℃ and 1600℃. An X-ray diffraction (XRD) analysis showed that the refractory samples are composed of mullite, corundum and silica. The length of the mullite crystals was measured by a method of image analysis of scanning electron microscopy (SEM). Chemical and mechanical properties of these materials were investigated and correlated with their microstructure. Resistance towards Acid Attack test showed that the refractory samples present good resistance, as well as, the alumina powder AR obtained from waste of silica-alumina bricks proves to be efficient for an eventual use.展开更多
This work explored the way to improve hot modulus q/' rupture (HMOR) and refractoriness under load (RUL) by adding mild-calcined coal gangue (MCG) in Al2O3 -SiO2 ultra low cement (ULC) castables, making use o...This work explored the way to improve hot modulus q/' rupture (HMOR) and refractoriness under load (RUL) by adding mild-calcined coal gangue (MCG) in Al2O3 -SiO2 ultra low cement (ULC) castables, making use of the in-situ effect of the MCG during heating-up. The influence of respective additions of 5%, 10% and 1.5% of the MCG powders calcined at 700℃ was investigated on HMOR at 1400 ℃ and RUL of the castables. With increased addition of the MCG, HMOR and RUL become significantly enhanced. At 10% of the MCG addition, HMOR reaches 3 MPa, as compared to 0. 3 MPa in the case of no MCG addition. RUL of the specimens dried at 110 ℃for 24 h can be increased by some 270 ℃ with 10% of the MCG addition. RUL 0.11 the specimens preheated at 1 500℃ for 3 h maintains the growth trend with the MCG addition increasing. The microstructure of the heated castable samples was investigated by means of SEM. The in-situ formed needle-like and interlaced mullite in the matrix is contributive to the tmprovement.展开更多
Reactive alumina is a well-established group of raw materials for refractory castables to improve their rheological behavior.In this article the influence of bimodal reactive alumina and standard(<325#)calcined alu...Reactive alumina is a well-established group of raw materials for refractory castables to improve their rheological behavior.In this article the influence of bimodal reactive alumina and standard(<325#)calcined alumina on workability,packing density and strength of alumina based castables is examined.It will be shown that there is a significant effect on water demand and apparent density of the castable,which is depending on the percentage of reactive alumina on the one hand and on the type of reactive alumina on the other hand.The effect of the alumina on setting time and cold crushing strength has shown to be insignificant in this set of experiments.展开更多
1 Scope This standard specifies the classification, shape and dimension, technical requirements, test methods, quality appraisal procedure, packing, marking, transportation, storage, and quality certificate of high a...1 Scope This standard specifies the classification, shape and dimension, technical requirements, test methods, quality appraisal procedure, packing, marking, transportation, storage, and quality certificate of high alumina insulating bricks.展开更多
1 Scope This standard specifies the classification, technical requirements, test methods, quality appraisal procedure, packing, marking, transportation, storage and quality certificate of high alumina refractory mort...1 Scope This standard specifies the classification, technical requirements, test methods, quality appraisal procedure, packing, marking, transportation, storage and quality certificate of high alumina refractory mortars.展开更多
文摘The role of nano-SiO 2 and ultra-fine boron carbide on the properties of alumina-graphite materials was investigated. The study showed that the ultra-fine boron carbide added modified the microstructure of residual carbon and promoted the chemical bond between residual carbon from phenolic resin and flake graphite. The carbon white could strengthen the residual carbon from phenolic resin. These two additives improved the mechanical properties of AG refractories at both room temperature and high temperature, and thermal shock resistance was improved noticeably. When the two additives were doped together, carbon white could retard the evaporation of B 2O 3. Thermal shock resistance was guaranteed with a smaller amount of ultra-fine boron carbide.
基金This work was supported by the Australia Research Council
文摘It is possible to enhance the high tempera- ture oxidationresistance and thus prolong the life time of non-oxide refractoriesby the application of oxide coating. In this work, silicon nitridebonded silicon carbide refracto- Ries were coated with alumina usingthe plasma spraying Technique. X-ray diffraction showed γ-Al_2O_3 tobe the Dominent phase in the as-sprayed alumina coatings.
基金the Federation for International Refractory Research and Education ( Fire) and to the General Council of Loiret ( CG45) for partial supports of this work
文摘The corrosion of refractories results from reactive transport,namely,transport of agents and chemical reactions of these agents with impregnated medium. On one hand,the transport involves either diffusion or impregnation depending on the state of the corrosive agents and the microstructure of the host media. On the other hand,chemical reactions may be very numerous and complex.This study focused on the reactive impregnation of Al2O3- CaO slag into porous high alumina refractory. The transport properties of the refractory material were identified by means of a dedicated capillary rising test. Chemical reactions between the solid high alumina skeleton and Al2O3- CaO slag involve successive dissolution / precipitation mechanisms forming aluminates of lime. Contrary to the thermodynamic properties of the binary system,the kinetics of these solid / liquid reactions is not well known.Corrosion tests associated with the quenching method,XRD analyses were performed for a better understanding of the kinetics. The results of this study open up a coupling approach for predicting the corrosion wear of refractory.
文摘Three kinds of composite alumina refractories were prepared with tabular alumina (3-1 and 1-0 mm) as aggregates,tabular alumina powder,α-Al2 O3 micropowder,and Si powder as matrix,adding 3 mass% hexagonal boron nitride (h-BN),3 mass% flake graphite and 10 mass% flake graphite,respectively.Cold physical properties,hot modulus of rupture,oxidation resistance,thermal shock resistance and slag corrosion resistance of the specimens were compared.The results show that:(1) physical properties and hot modulus of rupture of Al2 O3-h-BN refractories are slightly different from those of low carbon Al2 O3-C refractories,but better than those of traditional Al2 O3-C refractories with 10 mass% graphite ; (2) Al2 O3-h-BN refractories have better thermal shock resistance and oxidation resistance than the carbon containing refractories,while similar slag resistance with low carbon Al2 O3-C refractories ; (3) h-BN can replace flake graphite as a starting material for the preparation of composite alumina refractories,considering the overall properties of the material.
文摘In order to improve oxidation resistance and ther- mal shock resistance of Al2O3-C refractories, two groups of specimens were prepared with phenolic resin as binder, adding 0, 2 wt% , 4 wt% and 6 wt% commercial SiC or ZrO2-SiC composite powder synthesized from zircon respectively to Al2O3- C refractories, pressing at 200 MPa, drying fully at 250℃, and then carbon embedded firing at 1400℃ for 2 h. Oxidation resistance and thermal shock resistance were researched, phase composition was analyzed by XRD. The results showed that the oxidation of SiC in additives could protect carbon in specimens effectively and thus decreased the mass loss ratio and oxidation area, and improved the oxidation resistance of the specimen. Thermal shock resistance was improved owing to the micro crack toughening of ZrO2 and grain toughening of SiC. In this experiment, the specimens with 6 wt% ZrO2 -SiC composite powder or 6 wt% SiC powder had the best oxidation resistance and thermal shock resistance.
文摘The combination of SiC and andalusite with calcium aluminate binder for castables in high corrosive gasifying environments is a promising alternative refractory system for many different slag systems. After sintering,a glassy protective layer has been identified. Beside the interactions of the refractories with intermediate slag also the thermomechanical properties,the thermal shock performance and the microstructure have been evaluated as a function of different binder systems.
基金This work is supported by the National Natural Science Foundation of China Education Ministry of China
文摘The corrosion resistance of the Al2O3-C based refractories in melts containing titania has been studied by quasi-station immersion and rotary immersion. The corrosionrate is decreased with the addition of graphite carbon, and ZrO2 in the refractories . The corrosion, mechanism of Al2O3-C refractories, is. the oxidization of graphite carbon by the oxides of the melts the formation of deteriorate layer, For the Al2O3-C-ZrO2 refractories, the corrosion behavior is due to the, interaction between melts and refractories . The new compounds of FeO. SiO2, SiZrO4, FeO. 3 CaO, 2CaO. SiO2 and CaO. SiO2 are formed in the deteriorate layer.
基金financially supported by the National Natural Science Foundation of China ( General program,51272188, 51472184 and 51472185 )the Natural Science Foundation of Hubei Province,China ( Contract No. 2013CFA086 )Foreign Cooperation Projects in Science and Technology of Hubei Province,China ( Contract No. 2013BHE002)
文摘Carbon nanotubes (CNTs) have been extensively studied over the last two decades since they possess excellent properties.CNTs have been considered as new promising reinforcements for carbon containing refractories (CCRs).Current research progress of the CNT-reinforced MgO-C and Al2O3-C refractories was summarized in this mini-review,and the CNT-reinforced CCRs possess remarkable mechanical properties and superior thermal shock resistance compared to CCRs without CNTs.
文摘The paper analyzed the recycle condition and developing trend of used refractories China and other countries, irwluding research achievements of recycles of used refractories such as MgO-C bricks, Al2O3-MgO-C brics, Al2O3-SiC-C castable and MgO-Cr2O3 bricks. Recycled refractories exhibit the same or even better properties as compared with the original. In addition, prospects for recycle of used refractories are also discusseded.
文摘Al2O3-C refractories are widely used as functional elements like nozzles, well blocks, sliding gate plates and stoppers in the continuous casting process of steel production. Application of silicon as a metallic agent in Al2O3-C slide gate plate production is usual. In fact, a non-oxide bond can be generated due to the reaction between silicon and carbon under reducing atmosphere in the plate matrix. This non-oxide bond can enhance the mechanical strength and abrasion resistance. In order to improve the mechanical and thermo-mechanical properties, functional additives can be aimed to lower the sinte- ring temperature and tailor the microstructure. For this reason, the effect of a special solid state sintering aid addition on the microstructure and thermo-mechanical properties of Al2O3-C slide gate plates in the presence of Si as a metallic component has been investigated. Two types of specimens were pressed at 150 MPa, tempered at 200 ℃ and fired in coke bed at 1 400 ℃ , respectively. Physical ( BD and AP ) , mechanical ( CCS and MOR ) and thermo-mechanical ( HMOR ) properties were determined; in addition, phase composition was characterized by X-ray diffraction analysis ( XRD ) and microstructure of specimens was investigated by field emission scanning electron microscopy (FESEM). Results have shown that the addition of sintering aid increased the generation of cation vacancy in Al2O3 structure which enhanced the cation diffusion and densification process ; consequently, CCS, MOR and HMOR of specimens increased drasticallywhile bulk density and apparent porosity remained un- changed.
文摘Newly developed Al2O3-Si3N4 composite refractories used for blast furnace is introduced in this work. Al2O3-Si3N4 composite refractories attacked by alkali vapor and blast furnace slag was investigated. High performance Al2O3-Si3N4 composite refractories was produced and used at both 2560m^3 blast furnaces of Tan-gsteel and No. 5 blast furnace of Shaosteel.
基金the Natural Science Foundation of Henan Educational Committee ( N0. 2011B430011 and N0. 13B430991)
文摘Using tabular alumina as aggregate,tabular alumina fines,reactive alumina ultra-fines,aluminum powders,silicon powders,carbon black,flake graphite,B4 C and zircon fines as matrix,low carbon Al2O3-C refractories were prepared.Influences of zircon powders additions (0,3%,5% and 7%,in mass,the same hereinafter) on properties,phase composition and microstructure were investigated.The results show that the ZrO2-nitride can be in-situ formed through carbothermal reduction and nitridation in Al2O3-C refractories.With the increase of zircon powder,the oxidation resistance of the Al2O3-C refractories improves obviously,the oxidized layer thickness decreases from 7.94 mm without zircon to 2.71 mm with 5% zircon.HMOR at 1 400 ℃ of the Al2O3-C refractories reaches the maximum 14.9 MPa when zircon addition is 5%.With the increase of zircon powder,the apparent porosity and bulk density change a little,CMOR and CCS increase.
基金funded by the COMET program within the K2 Center “Integrated Computational MaterialProcess and Product Engineering (IC-MPPE)”, Project No. 859480+7 种基金supported by the Austrian Federal Ministries for TransportInnovationand Technology (BMVIT)Digital and Economic Affairs (BMDW)represented by the Austrian Research Funding Association (FFG)the federal states of StyriaUpper Austriaand Tyrol
文摘Alumina is one of the crucial and extensively utilized refractory components.As the refractory wear due to dissolution at elevated temperatures during operation is a major threat to refractory lifespan,quantifying dissolution is important for developing cost-effective and resource-efficient refractories.This study investigated the dissolution of alumina particles in two silicate and one calcium aluminate slags at 1450,1500,and 1550°C using high-temperature confocal laser scanning microscopy(HT-CLSM).Dissolution was quantified in terms of diffusivity,with all influencing factors,including Stefan flow and bath movement,incorporated into the determination process.The trends observed in total dissolution time and diffusivity in three slags at three experimental temperatures could not be explained solely on the basis of slag basicity.Two parameters,considering the influencing factors,were introduced to explain these trends.Furthermore,the linear trend observed in Arrhenius plots of diffusivities supports the diffusivity results.Additionally,good agreement between the diffusivities of alumina in one silicate slag obtained via CLSM and rotating finger test investigations verified the reliability of the results.
基金financially supported by the Preliminary Research Project for National Basic Research Program of China (No. 2012CB724607)the Research Planning Project of Basic and Advanced Technology of Henan Province, China (No.162300410043)
文摘The corrosion behavior of alumina-chromia refractory against two kinds of industrial slags (coal slag and iron smelting slag) at 1550℃ was investigated via thermodynamic simulations. In the proposed simulation model, the initial slag first attacks the matrix and surface aggregates and subsequently attacks the inner aggregates. The simulation results indicate that the slag chemistry strongly affects the phase formation and corrosion behavior of the refractory brick. Greater amounts of alumina were dissolved and spinel solid phases formed when the brick interacted with iron smelting slag. These phenomena, as well as the calculated lower viscosity, may lead to much deeper penetration than that exhibited by coal slag and to more severe corrosion compared to that induced by coal slag. The thermodynamic calculations well match the experimental observations, demonstrating the efficiency of the proposed simulation model for evaluating the corrosion behavior of alumina-chromia refractory.
文摘Five mixtures (M1 to M5) of silica-alumina geomaterials and two varieties of alumina (AP and AR) were used for the elaboration of mullite refractory materials between 1500℃ and 1600℃. An X-ray diffraction (XRD) analysis showed that the refractory samples are composed of mullite, corundum and silica. The length of the mullite crystals was measured by a method of image analysis of scanning electron microscopy (SEM). Chemical and mechanical properties of these materials were investigated and correlated with their microstructure. Resistance towards Acid Attack test showed that the refractory samples present good resistance, as well as, the alumina powder AR obtained from waste of silica-alumina bricks proves to be efficient for an eventual use.
文摘This work explored the way to improve hot modulus q/' rupture (HMOR) and refractoriness under load (RUL) by adding mild-calcined coal gangue (MCG) in Al2O3 -SiO2 ultra low cement (ULC) castables, making use of the in-situ effect of the MCG during heating-up. The influence of respective additions of 5%, 10% and 1.5% of the MCG powders calcined at 700℃ was investigated on HMOR at 1400 ℃ and RUL of the castables. With increased addition of the MCG, HMOR and RUL become significantly enhanced. At 10% of the MCG addition, HMOR reaches 3 MPa, as compared to 0. 3 MPa in the case of no MCG addition. RUL of the specimens dried at 110 ℃for 24 h can be increased by some 270 ℃ with 10% of the MCG addition. RUL 0.11 the specimens preheated at 1 500℃ for 3 h maintains the growth trend with the MCG addition increasing. The microstructure of the heated castable samples was investigated by means of SEM. The in-situ formed needle-like and interlaced mullite in the matrix is contributive to the tmprovement.
文摘Reactive alumina is a well-established group of raw materials for refractory castables to improve their rheological behavior.In this article the influence of bimodal reactive alumina and standard(<325#)calcined alumina on workability,packing density and strength of alumina based castables is examined.It will be shown that there is a significant effect on water demand and apparent density of the castable,which is depending on the percentage of reactive alumina on the one hand and on the type of reactive alumina on the other hand.The effect of the alumina on setting time and cold crushing strength has shown to be insignificant in this set of experiments.
文摘1 Scope This standard specifies the classification, shape and dimension, technical requirements, test methods, quality appraisal procedure, packing, marking, transportation, storage, and quality certificate of high alumina insulating bricks.
文摘1 Scope This standard specifies the classification, technical requirements, test methods, quality appraisal procedure, packing, marking, transportation, storage and quality certificate of high alumina refractory mortars.