This work intends to investigate the inhibition behaviour of 2-butine 1, 4diol and potassium sodium tartrate and their synergistic effects on 3003 aluminium alloy corrosion in 0.5% NaCl solution. Experiments were carr...This work intends to investigate the inhibition behaviour of 2-butine 1, 4diol and potassium sodium tartrate and their synergistic effects on 3003 aluminium alloy corrosion in 0.5% NaCl solution. Experiments were carried out by electrochemical impedance spectroscopy (EIS) and Tafel polarization method in a three-electrode cell. It was concluded that the inhibition efficiencies increased with an increase in the concentrations of inhibitors. For 2-butinel, 4diol and tartrate salt, the optimum in the inhibition efficiency, at room temperature and neutral pH, was observed for concentrations close to 10-3 mol/L and 1.5×10^-3mol/L, respectively. The electrochemical results illustrated that 2-butinel, 4diol and tartrate salt, have significant synergistic inhibition effects on corrosion of 3003 aluminium alloy in 0.5% NaCl solution. The optimum ratio of concentrations for tartrate to alcohol was 2:1.展开更多
Metal Sm has been widely used in making Al–Sm magnet alloy materials. Conventional distillation technology to produce Sm has the disadvantages of low productivity, high costs, and pollution generation. The objective ...Metal Sm has been widely used in making Al–Sm magnet alloy materials. Conventional distillation technology to produce Sm has the disadvantages of low productivity, high costs, and pollution generation. The objective of this study was to develop a molten salt electrolyte system to produce Al–Sm alloy directly, with focus on the electrical conductivity and optimal operating conditions to minimize the energy consumption. The continuously varying cell constant(CVCC) technique was used to measure the conductivity for the Na3AlF6–AlF3–LiF–MgF2–Al2O3–Sm2O3electrolysis medium in the temperature range from 905 to 1055°C. The temperature(t) and the addition of Al2O3(W(Al2O3)), Sm2O3(W(Sm2O3)), and a combination of Al2O3and Sm2O3into the basic fluoride system were examined with respect to their effects on the conductivity(κ) and activation energy. The experimental results showed that the molten electrolyte conductivity increases with increasing temperature(t) and decreases with the addition of Al2O3or Sm2O3or both. We concluded that the optimal operation conditions for Al–Sm intermediate alloy production in the Na3AlF6–AlF3–LiF–MgF2–Al2O3–Sm2O3system are W(Al2O3) + W(Sm2O3) = 3wt%, W(Al2O3):W(Sm2O3) = 7:3, and a temperature of 965 to 995°C, which results in satisfactory conductivity, low fluoride evaporation losses, and low energy consumption.展开更多
以铝盐、作物秸秆为主要原料,用氢氧化钠、氯乙酸通过碱化和醚化对秸秆进行改性,在一定条件下与铝盐合成了一种新型的无机-天然有机复合絮凝剂(定名为SPA),研究了其对高岭土模拟废水的吸光度和浊度去除性能,并对几个主要影响因素作了...以铝盐、作物秸秆为主要原料,用氢氧化钠、氯乙酸通过碱化和醚化对秸秆进行改性,在一定条件下与铝盐合成了一种新型的无机-天然有机复合絮凝剂(定名为SPA),研究了其对高岭土模拟废水的吸光度和浊度去除性能,并对几个主要影响因素作了考察。结果表明:SPA对该模拟废水有较好的处理效果,5 mL SPA/1 L高岭土悬液的投量就可以获得吸光度和浊度88%以上的去除率,室温即可达到最佳处理效果,且pH值适应范围广,大约为3-9。还进行了SPA和铝盐对市政污水的处理效果的对比分析,试验结果表明:对其出水的吸光度去除率、浊度去除率和SS去除率来说,SPA都比铝盐的处理效果好;SPA对COD的去除效果比铝盐略差,但是在低投量时其COD去除率为65%,可以满足污水初级处理的要求。展开更多
文摘This work intends to investigate the inhibition behaviour of 2-butine 1, 4diol and potassium sodium tartrate and their synergistic effects on 3003 aluminium alloy corrosion in 0.5% NaCl solution. Experiments were carried out by electrochemical impedance spectroscopy (EIS) and Tafel polarization method in a three-electrode cell. It was concluded that the inhibition efficiencies increased with an increase in the concentrations of inhibitors. For 2-butinel, 4diol and tartrate salt, the optimum in the inhibition efficiency, at room temperature and neutral pH, was observed for concentrations close to 10-3 mol/L and 1.5×10^-3mol/L, respectively. The electrochemical results illustrated that 2-butinel, 4diol and tartrate salt, have significant synergistic inhibition effects on corrosion of 3003 aluminium alloy in 0.5% NaCl solution. The optimum ratio of concentrations for tartrate to alcohol was 2:1.
基金financially supported by the National Natural Science Foundation of China (Nos. 51564015 and 51674126)the Graduate Student Innovation Special Fund of Jiangxi Province (YC2015-B064)+2 种基金the Science and Technology Research Project of Jiangxi Department of Education (GJJ150664)the Outstanding Doctoral Dissertation Project Fund of JXUST (YB2016007)the Scientific Research Fund of JXUST (NSFJ2014-G09)
文摘Metal Sm has been widely used in making Al–Sm magnet alloy materials. Conventional distillation technology to produce Sm has the disadvantages of low productivity, high costs, and pollution generation. The objective of this study was to develop a molten salt electrolyte system to produce Al–Sm alloy directly, with focus on the electrical conductivity and optimal operating conditions to minimize the energy consumption. The continuously varying cell constant(CVCC) technique was used to measure the conductivity for the Na3AlF6–AlF3–LiF–MgF2–Al2O3–Sm2O3electrolysis medium in the temperature range from 905 to 1055°C. The temperature(t) and the addition of Al2O3(W(Al2O3)), Sm2O3(W(Sm2O3)), and a combination of Al2O3and Sm2O3into the basic fluoride system were examined with respect to their effects on the conductivity(κ) and activation energy. The experimental results showed that the molten electrolyte conductivity increases with increasing temperature(t) and decreases with the addition of Al2O3or Sm2O3or both. We concluded that the optimal operation conditions for Al–Sm intermediate alloy production in the Na3AlF6–AlF3–LiF–MgF2–Al2O3–Sm2O3system are W(Al2O3) + W(Sm2O3) = 3wt%, W(Al2O3):W(Sm2O3) = 7:3, and a temperature of 965 to 995°C, which results in satisfactory conductivity, low fluoride evaporation losses, and low energy consumption.
文摘以铝盐、作物秸秆为主要原料,用氢氧化钠、氯乙酸通过碱化和醚化对秸秆进行改性,在一定条件下与铝盐合成了一种新型的无机-天然有机复合絮凝剂(定名为SPA),研究了其对高岭土模拟废水的吸光度和浊度去除性能,并对几个主要影响因素作了考察。结果表明:SPA对该模拟废水有较好的处理效果,5 mL SPA/1 L高岭土悬液的投量就可以获得吸光度和浊度88%以上的去除率,室温即可达到最佳处理效果,且pH值适应范围广,大约为3-9。还进行了SPA和铝盐对市政污水的处理效果的对比分析,试验结果表明:对其出水的吸光度去除率、浊度去除率和SS去除率来说,SPA都比铝盐的处理效果好;SPA对COD的去除效果比铝盐略差,但是在低投量时其COD去除率为65%,可以满足污水初级处理的要求。