The effects of putrescine on improving rice growth under aluminum(Al)toxicity conditions have been previously demonstrated,however,the underlying mechanism remains unclear.In this study,treatment with 50 pmol/L Al sig...The effects of putrescine on improving rice growth under aluminum(Al)toxicity conditions have been previously demonstrated,however,the underlying mechanism remains unclear.In this study,treatment with 50 pmol/L Al significantly decreased rice root growth and whole rice dry weight,inhibited Ca2+uptake,decreased ATP syn thesis,and in creased Al,H2O2 and malon dialdehyde(MDA)con tents,whereas the application of putrescine mitigated these negative effects.Putrescine increased root growth and total dry weight of rice,reduced total Al content,decreased H2O2 and MDA contents by increasing antioxidant enzyme(superoxide dismutase,peroxidase,catalase and glutathione S・transferase)activities,increased Ca2+uptake and energy product!oru Proteomic analyses using data-independent acquisition successfully identified 7934 proteins,and 59 representative proteins exhibiting fold-change values higher than 1.5 were randomly selected.From the results of the proteomic and biochemical analyses,we found that putrescine significantly inhibited ethylene biosynthesis and phosphorus uptake in rice roots,increased pectin methylation,decreased pectin content and apoplastic Al deposit!on in rice roots.Putrescine also alleviated Al toxicity by repairing damaged DNA and increasing the proteins involved in maintaining plasma membra ne integrity and normal cell proliferation.These fin dings improve our understanding of how putrescine affects the rice response to Al toxicity,which will facilitate further studies on environmental protection,crop safety,in novations in rice performance and real-world producti on.展开更多
Plants growing in acid soils may suffer both phosphorus (P) deficiency and aluminum (Al) toxicity.Hydroponic experiments were undertaken to assess the single and combination effects of Al toxicity and low P stress...Plants growing in acid soils may suffer both phosphorus (P) deficiency and aluminum (Al) toxicity.Hydroponic experiments were undertaken to assess the single and combination effects of Al toxicity and low P stress on seedling growth,chlorophyll and proline contents,antioxidative response and lipid peroxidation of two rice genotypes (Yongyou 8 and Xiushui 132) differing in Al tolerance.Al toxicity and P deficiency both inhibited rice seedling growth.The development of toxic symptoms was characterized by reduced chlorophyll content,increased proline and malondialdehyde contents in both roots and leaves,and increased peroxidase and superoxide dismutase activities in roots,but decreased in leaves.The stress condition induced more severe growth inhibition and oxidative stress in Yongyou 8,and Xiushui 132 showed higher tolerance to both Al toxicity and P deficiency.P deficiency aggravated Al toxicity to plant growth and induced more severe lipid peroxidation.展开更多
A study was carried out to evaluate the development of 12 tetraploid alfalfa cultivars exposed to Al toxicity in nutrient solution. Newly germinated seedlings of cultivars Alfa 200, Alto, Araucana, Costera, Crioula, E...A study was carried out to evaluate the development of 12 tetraploid alfalfa cultivars exposed to Al toxicity in nutrient solution. Newly germinated seedlings of cultivars Alfa 200, Alto, Araucana, Costera, Crioula, Esmeralda, Falcon, F-708, Rio, Romagnola, Valley Plus, and Victoria, were exposed to either 0, 4, 8 or 12 mg·L-1 Al3+. Plants were analyzed regarding root length (RL) and dry matter (RDM), aerial part length (APL), and dry matter (APDM), hypocotyl length (HypL) and dry matter (HypDM), epicotyl length (EpiL) and dry matter (EpiDM), and petiole length (PetL), and dry matter (PetDM). Results indicated that, although all genotypes exhibited detectable sensitivity to such a stress, cvs. Crioula, Victoria and Alpha-200 were tolerant to 4 mg·L-1 Al3+ toxicity. It was also concluded that Al3+ levels up to the 4 mg·L-1 will be effective for screening tetraploid alfalfa genotypes regarding this type of stress, when evaluations are made in nutrient solution. Finally, RL is the most suitable variable for conducting such evaluations, but all variables related to dry matter in the aerial part are also recommended.展开更多
Aluminum is an abundant metal in the earth’s crust that turns out to be toxic in acidic environments.Many plants are affected by the presence of aluminum at the whole plant level,at the organ level,and at the cellula...Aluminum is an abundant metal in the earth’s crust that turns out to be toxic in acidic environments.Many plants are affected by the presence of aluminum at the whole plant level,at the organ level,and at the cellular level.Tobacco as a cash crop(Nicotiana tabacum L.)is a widely cultivated plant worldwide and is also a good model organism for research.Although there are many articles on Al-phytotoxicity in the literature,reviews on a single species that are economically and scientifically important are limited.In this article,we not only provide the biology associated with tobacco Al-toxicity,but also some essential information regarding the effects of this metal on other plant species(even animals).This review provides information on aluminum localization and uptake process by different staining techniques,as well as the effects of its toxicity at different compartment levels and the physiological consequences derived from them.In addition,molecular studies in recent years have reported specific responses to Al toxicity,such as overexpression of various protective proteins.Besides,this review discusses data on various organelle-based responses,cell death,and other mechanisms,data on tobacco plants and other kingdoms relevant to these studies.展开更多
The effects of acid deposition on pine forest ecosystems in Longli of Guizhou Province, southwestern China are studied using indoor experiments and model simulations. Indoor experiments are designed to explore the alu...The effects of acid deposition on pine forest ecosystems in Longli of Guizhou Province, southwestern China are studied using indoor experiments and model simulations. Indoor experiments are designed to explore the aluminum toxicity on pine seedlings, and the long-term soil acidification model (LTSAM) and a terrestrial biogeochemistry model (CENTURY) are used to simulate the influences of acid deposition on pine forest ecosystems. The indoor experiment results of aluminum toxicishow that aluminum ions in solution limit plant growth and acid deposition enhances this effect by facilitating the release of aluminum ions from the soil. Pine seedling bio- mass and root elongation decrease as the aluminum concentration increases. The results of model simulations show that the soil chemis- try varies significantly with different changes in acid deposition. When the acid deposition increases, the pH value in the soil solution decreases and the soil A13+ concentration increases. The increased acid deposition also has negative impacts on the forest ecosystem, i.e., decreases plant biomass, net primary productivity (NPP) and net C02 uptake. As a result, the soil organic carbon (SOC) decreases be- cause of the limited supply of decomposition material. Thus acid deposition need be reduced to help protect the forest ecosystems.展开更多
The potential mechanism by which Ca alleviates Al toxicity was investigated in barley seedlings. It was found that 100 Al-alone treatment inhibited barley plant growth and thereby reduced shoot height and root length,...The potential mechanism by which Ca alleviates Al toxicity was investigated in barley seedlings. It was found that 100 Al-alone treatment inhibited barley plant growth and thereby reduced shoot height and root length, and dry weights of root, shoot and leaf; promoted Al accumulation but inhibited Ca absorption in plant tissues; and induced an increase in the activities of superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) and in the level of lipid peroxidation (MDA content) in leaves. Except for the increase in Ca concentration in plant tissues, treatment with 0.5 mM Ca in the absence of Al had less effect on the above-mentioned parameters, compared with the control. Addition of Ca efficiently reduced Al toxicity, which is reflected by the promotion of plant growth, reduction in Al concentration and MDA content, increase in Ca concentration and in SOD, POD, and CAT activities compared with the Al-alone-treatment; with increase in Ca level (3.0 raM), the ameliorative effect became more dominant. This indicated that the alleviation of aluminum toxicity in barley seedlings with Ca supplementation could be associated with less absorption of Al and the enhancement of the protective ability of the cell because of increased activity of the antioxidative enzyme.展开更多
The AA5052 aluminum alloy is widely used in automobile and aerospace manufacturing,and with the development of light-weight alloys,it is required that these materials exhibit better mechanical properties.Previous stud...The AA5052 aluminum alloy is widely used in automobile and aerospace manufacturing,and with the development of light-weight alloys,it is required that these materials exhibit better mechanical properties.Previous studies have demonstrated that the addition of Sc to aluminum alloys can improve both the microstructure and properties of the alloys.In this study,the effect of Sc on the Fe-rich phase and properties of the AA5052 aluminum alloy was studied by adding 0%,0.05%,0.2%,and 0.3%Sc.The results show that with the increase of Sc,the coarse needle-like Fe-rich phase gradually transforms into Chinese-script and then nearly spherical particles,reduce the size of Fe-rich phase,and refine the grain with increase of high angle grain boundaries(HAGBs).These microstructure changes enhance the strength of the AA5052 alloy through Sc addition.The ductility of the alloy is obviously improved because the addition of a lower amount of Sc changes the morphology of Fe-rich phase from needle-like into a Chinese-script,and it is subsequently reduced as a result of significant increase in HAGBs with increasing Sc content.展开更多
The dynamic recrystallization behavior of 7085 aluminum alloy during hot compression at various temperatures (573?723 K) and strain rates (0.01-10 s^-1) was studied by electron back scattered diffraction (EBSD...The dynamic recrystallization behavior of 7085 aluminum alloy during hot compression at various temperatures (573?723 K) and strain rates (0.01-10 s^-1) was studied by electron back scattered diffraction (EBSD), electro-probe microanalyzer (EPMA) and transmission electron microscopy (TEM). It is shown that dynamic recovery is the dominant softening mechanism at high Zener?Hollomon (Z) values, and dynamic recrystallization tends to appear at low Z values. Hot compression with ln Z=24.01 (723 K, 0.01 s?1) gives rise to the highest fraction of recrystallization of 10.2%. EBSD results show that the recrystallized grains are present near the original grain boundaries and exhibit similar orientation to the deformed grain. Strain-induced boundary migration is likely the mechanism for dynamic recrystallization. The low density of Al3Zr dispersoids near grain boundaries can make contribution to strain-induced boundary migration.展开更多
The effect of homogenization time on quench sensitivity of a cast 7085 aluminum alloy was investigated by means of end-quenching test, optical microscope (OM), scanning electron microscope (SEM) and transmission e...The effect of homogenization time on quench sensitivity of a cast 7085 aluminum alloy was investigated by means of end-quenching test, optical microscope (OM), scanning electron microscope (SEM) and transmission electron microscope (TEM). The results show that with the increase of homogenization time from 48 h to 384 h, quench sensitivity increased slightly as the largest difference in the hardness was increased from 5.2% to 6.9% in the end-quenched and aged specimens. Prolonging homogenization had little effect on the grain structure, but improved the dissolution of soluble T phase and resulted in larger Al3Zr dispersoids with a low number density. Some small quench-induced η phase particles on Al3Zr dispersoids were observed inside grains during slow quenching, which decreased hardness after subsequent aging. The change in the character of Al3Zr dispersoids exerted slight influence on quench sensitivity.展开更多
The semi-solid slurry of 7075 aluminum alloy was prepared by a serpentine pouring channel (SCP). Influences of pouring temperature and the number of turns on the microstructure of semi-solid 7075 alloy slurry were i...The semi-solid slurry of 7075 aluminum alloy was prepared by a serpentine pouring channel (SCP). Influences of pouring temperature and the number of turns on the microstructure of semi-solid 7075 alloy slurry were investigated. The results demonstrated that the semi-solid 7075 aluminum alloy slurry with satisfied quality could be generated by a serpentine pouring channel when the pouring temperature was in the range of 680-700 ℃. At a given pouring temperature, the equivalent size of the primaryα(Al) grains decreased and the shape factor increased with the increase of the number of turns. During the slurry preparation of semi-solid 7075 aluminum alloy, the flow direction of alloy melt changed many times when it flowed in a curved and closed serpentine channel. With the effect of“stirring”in it , the primary nuclei gradually evolved into spherical and near-spherical grains.展开更多
The Al-9Zn-2.8Mg-2.5Cu-xZr-ySc alloys (x=0, 0.15%, 0.15%; y=0, 0.05%, 0.15%), produced by low-frequent electromagnetic casting technology, were subjected to homogenization treatment, hot extrusion, solution and agin...The Al-9Zn-2.8Mg-2.5Cu-xZr-ySc alloys (x=0, 0.15%, 0.15%; y=0, 0.05%, 0.15%), produced by low-frequent electromagnetic casting technology, were subjected to homogenization treatment, hot extrusion, solution and aging treatment. The effects of minor Sc and Zr addition on microstructure, recrystallization and properties of alloys were studied by optical microscopy (OM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results show that Sc and Zr addition can refine grains of the as-cast alloy by precipitation of primary Al3(Sc,Zr) particles formed during solidification as heterogeneous nuclei. Secondary Al3(Sc,Zr) precipitates formed during homogenization treatment strongly pin the movement of dislocation and subgrain boundaries, which can effectively inhibit the alloys recrystallization. Compared with the alloy without Sc and Zr addition, the Al-Zn-Mg-Cu-Zr alloy with 0.05%Sc and 0.15%Zr shows the increase in tensile strength and yield strength by 172 MPa and 218 MPa, respectively. Strengthening comes from the contributions of precipitation, substructure and grain refining.展开更多
The semi-solid slurry of A380 aluminum alloy was prepared by the serpentine channel. The effects of pouring temperature, curve number and curve diameter of the serpentine channel on the microstructure of the semi-soli...The semi-solid slurry of A380 aluminum alloy was prepared by the serpentine channel. The effects of pouring temperature, curve number and curve diameter of the serpentine channel on the microstructure of the semi-solid A380 aluminum alloy slurry were investigated. The results show that the satisfactory semi-solid A380 aluminum alloy slurry could be obtained when the pouring temperature ranged from 630 to 650 °C. Under the same conditions, increasing the curve number or reducing the curve diameter of the serpentine channel would decrease the average diameter and increase the shape factor of the primary α(Al) grains. The "self-stirring" of the alloy melt in the serpentine channel was beneficial to the ripening of the dendrites and the spheroidizing of the primary α(Al) grains.展开更多
Semi-solid A356 aluminum alloy slurry was prepared by using serpentine channel pouring process, and the influences of the channel diameters and pouring temperatures on the semi-solid A356 aluminum alloy slurry were in...Semi-solid A356 aluminum alloy slurry was prepared by using serpentine channel pouring process, and the influences of the channel diameters and pouring temperatures on the semi-solid A356 aluminum alloy slurry were investigated. The experimental results show that when the channel diameter is 20 and 25 mm, respectively, and the pouring temperature is 640-680 ℃, the average diameter of primary α(Al) grains in the prepared A356 aluminum alloy slurry is 50-75 and 55-78 μm, respectively, and the average shape factor of primary α(Al) grains is 0.89-0.76 and 0.86-0.72, respectively. With the decline in the pouring temperature, the microstructure of semi-solid A356 aluminum alloy slurry is more desirable and a serpentine channel with smaller diameter is also advantageous to the microstructure imProvement. During the preparation of semi-solid A356 aluminum alloy slurry, a large number of nuclei can be produced by the chilling effect of the serpentine channel, and owing to the combined effect of the chilled nuclei separation and melt self-stirring, primary α(Al) nuclei can be multiplied and spheroidized finally.展开更多
Ultrasonic-assisted soldering of 2024 aluminum alloys using a filler metal of Zn-5Al alloy was investigated at the temperature of 400 ℃,which is lower than the solution strengthening temperature of Al-Cu alloys.The u...Ultrasonic-assisted soldering of 2024 aluminum alloys using a filler metal of Zn-5Al alloy was investigated at the temperature of 400 ℃,which is lower than the solution strengthening temperature of Al-Cu alloys.The ultrasonic vibration with power of 200 W and vibration amplitude of 15 μm at the frequency of 21 kHz was applied on the top samples.The ultrasonic vibration promoted the dissolution of Al elements in the base metal.The reduction of volume fraction of the eutectic phases in the bonds was investigated by increasing ultrasonic vibration time.As the ultrasonic vibration time increased from 3 s to 30 s,the volume fraction of the eutectic phase in the bonds decreased from 12.9% to 0.9%,and the shear strength of the joints was up to 149-153 MPa,increased by 20%.The improvement of the mechanical properties of joints was discussed based on the modulus and hardness of the phases in the bonds and the fracture of the joints.展开更多
Aluminum(Al)toxicity in acid soils is a significant limitation to crop production worldwide,as 13%of the world's rice is produced in acid soil with high Al content.Rice is likely the most Al-resistant cereal and a...Aluminum(Al)toxicity in acid soils is a significant limitation to crop production worldwide,as 13%of the world's rice is produced in acid soil with high Al content.Rice is likely the most Al-resistant cereal and also the cereal,where Al resistance is the most genetically complex with external detoxification and internal tolerance.Many Al-resistance genes in rice have been cloned,including Al resistance transcription factor 1(ART1)and other transcription factors,organic acid transporter genes,and metal ion transporter gene.This review summarized the recent characterized genes affecting Al tolerance in rice and the interrelationships between Al and other plant nutrients.展开更多
The effect of SiC particles reinforcement with average size of 1, 5, 20 and 50 μm and volume fraction of 5%, 10% and 15% on the microstructure and tribological properties of Al-based composite was investigated. Compo...The effect of SiC particles reinforcement with average size of 1, 5, 20 and 50 μm and volume fraction of 5%, 10% and 15% on the microstructure and tribological properties of Al-based composite was investigated. Composites were produced by applying compocasting process. Tribological properties of the unreinforced alloy and composites were studied using pin-on-disc wear tester, under dry sliding conditions at different specific loads. The influence of secondary mechanical processing with different rolling reductions on the dry sliding wear characteristics of Al matrix composites was also assessed. Hardness measurement and scanning electron microscopy were used for microstructural characterization and investigation of worn surfaces and wear debris. The proper selection of process parameter such as pouring temperature, stirring speed, stirring time, pre-heated temperature of reinforcement can all influence the quality of the fabricated composites. The porosity level of composite should be minimized and the chemical reaction between the reinforcement and matrix should be avoided.展开更多
基金supported by the Zhejiang Provincial Natural Science Foundation of China(Grant No.LQ19C020007)the National Natural Science Foundation of China(Grant Nos.31901452,31771733,32001104 and 31872857)+2 种基金the Key Research and Development Program of Zhejiang Province,China(Grant No.2021C02002)the Open Project of State Key Laboratory of Rice Biology of China(Grant No.20190402)the Basic Research Foundation of National Commonweal Research Institute of China(Grant No.2017RG004-2).
文摘The effects of putrescine on improving rice growth under aluminum(Al)toxicity conditions have been previously demonstrated,however,the underlying mechanism remains unclear.In this study,treatment with 50 pmol/L Al significantly decreased rice root growth and whole rice dry weight,inhibited Ca2+uptake,decreased ATP syn thesis,and in creased Al,H2O2 and malon dialdehyde(MDA)con tents,whereas the application of putrescine mitigated these negative effects.Putrescine increased root growth and total dry weight of rice,reduced total Al content,decreased H2O2 and MDA contents by increasing antioxidant enzyme(superoxide dismutase,peroxidase,catalase and glutathione S・transferase)activities,increased Ca2+uptake and energy product!oru Proteomic analyses using data-independent acquisition successfully identified 7934 proteins,and 59 representative proteins exhibiting fold-change values higher than 1.5 were randomly selected.From the results of the proteomic and biochemical analyses,we found that putrescine significantly inhibited ethylene biosynthesis and phosphorus uptake in rice roots,increased pectin methylation,decreased pectin content and apoplastic Al deposit!on in rice roots.Putrescine also alleviated Al toxicity by repairing damaged DNA and increasing the proteins involved in maintaining plasma membra ne integrity and normal cell proliferation.These fin dings improve our understanding of how putrescine affects the rice response to Al toxicity,which will facilitate further studies on environmental protection,crop safety,in novations in rice performance and real-world producti on.
基金supported by the Natural Science Fund of Zhejiang Province,China(Grant No.Y3100450)the Educative Department of Zhejiang Province,China(Grant No.Z201018672)
文摘Plants growing in acid soils may suffer both phosphorus (P) deficiency and aluminum (Al) toxicity.Hydroponic experiments were undertaken to assess the single and combination effects of Al toxicity and low P stress on seedling growth,chlorophyll and proline contents,antioxidative response and lipid peroxidation of two rice genotypes (Yongyou 8 and Xiushui 132) differing in Al tolerance.Al toxicity and P deficiency both inhibited rice seedling growth.The development of toxic symptoms was characterized by reduced chlorophyll content,increased proline and malondialdehyde contents in both roots and leaves,and increased peroxidase and superoxide dismutase activities in roots,but decreased in leaves.The stress condition induced more severe growth inhibition and oxidative stress in Yongyou 8,and Xiushui 132 showed higher tolerance to both Al toxicity and P deficiency.P deficiency aggravated Al toxicity to plant growth and induced more severe lipid peroxidation.
文摘A study was carried out to evaluate the development of 12 tetraploid alfalfa cultivars exposed to Al toxicity in nutrient solution. Newly germinated seedlings of cultivars Alfa 200, Alto, Araucana, Costera, Crioula, Esmeralda, Falcon, F-708, Rio, Romagnola, Valley Plus, and Victoria, were exposed to either 0, 4, 8 or 12 mg·L-1 Al3+. Plants were analyzed regarding root length (RL) and dry matter (RDM), aerial part length (APL), and dry matter (APDM), hypocotyl length (HypL) and dry matter (HypDM), epicotyl length (EpiL) and dry matter (EpiDM), and petiole length (PetL), and dry matter (PetDM). Results indicated that, although all genotypes exhibited detectable sensitivity to such a stress, cvs. Crioula, Victoria and Alpha-200 were tolerant to 4 mg·L-1 Al3+ toxicity. It was also concluded that Al3+ levels up to the 4 mg·L-1 will be effective for screening tetraploid alfalfa genotypes regarding this type of stress, when evaluations are made in nutrient solution. Finally, RL is the most suitable variable for conducting such evaluations, but all variables related to dry matter in the aerial part are also recommended.
文摘Aluminum is an abundant metal in the earth’s crust that turns out to be toxic in acidic environments.Many plants are affected by the presence of aluminum at the whole plant level,at the organ level,and at the cellular level.Tobacco as a cash crop(Nicotiana tabacum L.)is a widely cultivated plant worldwide and is also a good model organism for research.Although there are many articles on Al-phytotoxicity in the literature,reviews on a single species that are economically and scientifically important are limited.In this article,we not only provide the biology associated with tobacco Al-toxicity,but also some essential information regarding the effects of this metal on other plant species(even animals).This review provides information on aluminum localization and uptake process by different staining techniques,as well as the effects of its toxicity at different compartment levels and the physiological consequences derived from them.In addition,molecular studies in recent years have reported specific responses to Al toxicity,such as overexpression of various protective proteins.Besides,this review discusses data on various organelle-based responses,cell death,and other mechanisms,data on tobacco plants and other kingdoms relevant to these studies.
基金Under the auspices of National Basic Research Program of China(No.2010CB951802,2005CB422207)Knowledge Innovation Program of Chinese Academy of Sciences(No.KZCX2-YW-219)National High Technology Research and Development Program of China(No.2009AA122104)
文摘The effects of acid deposition on pine forest ecosystems in Longli of Guizhou Province, southwestern China are studied using indoor experiments and model simulations. Indoor experiments are designed to explore the aluminum toxicity on pine seedlings, and the long-term soil acidification model (LTSAM) and a terrestrial biogeochemistry model (CENTURY) are used to simulate the influences of acid deposition on pine forest ecosystems. The indoor experiment results of aluminum toxicishow that aluminum ions in solution limit plant growth and acid deposition enhances this effect by facilitating the release of aluminum ions from the soil. Pine seedling bio- mass and root elongation decrease as the aluminum concentration increases. The results of model simulations show that the soil chemis- try varies significantly with different changes in acid deposition. When the acid deposition increases, the pH value in the soil solution decreases and the soil A13+ concentration increases. The increased acid deposition also has negative impacts on the forest ecosystem, i.e., decreases plant biomass, net primary productivity (NPP) and net C02 uptake. As a result, the soil organic carbon (SOC) decreases be- cause of the limited supply of decomposition material. Thus acid deposition need be reduced to help protect the forest ecosystems.
文摘The potential mechanism by which Ca alleviates Al toxicity was investigated in barley seedlings. It was found that 100 Al-alone treatment inhibited barley plant growth and thereby reduced shoot height and root length, and dry weights of root, shoot and leaf; promoted Al accumulation but inhibited Ca absorption in plant tissues; and induced an increase in the activities of superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) and in the level of lipid peroxidation (MDA content) in leaves. Except for the increase in Ca concentration in plant tissues, treatment with 0.5 mM Ca in the absence of Al had less effect on the above-mentioned parameters, compared with the control. Addition of Ca efficiently reduced Al toxicity, which is reflected by the promotion of plant growth, reduction in Al concentration and MDA content, increase in Ca concentration and in SOD, POD, and CAT activities compared with the Al-alone-treatment; with increase in Ca level (3.0 raM), the ameliorative effect became more dominant. This indicated that the alleviation of aluminum toxicity in barley seedlings with Ca supplementation could be associated with less absorption of Al and the enhancement of the protective ability of the cell because of increased activity of the antioxidative enzyme.
基金supported by the Key Research&Development Program of Yunnan Province(Grant numbers 202103AA080017,202203AE140011).
文摘The AA5052 aluminum alloy is widely used in automobile and aerospace manufacturing,and with the development of light-weight alloys,it is required that these materials exhibit better mechanical properties.Previous studies have demonstrated that the addition of Sc to aluminum alloys can improve both the microstructure and properties of the alloys.In this study,the effect of Sc on the Fe-rich phase and properties of the AA5052 aluminum alloy was studied by adding 0%,0.05%,0.2%,and 0.3%Sc.The results show that with the increase of Sc,the coarse needle-like Fe-rich phase gradually transforms into Chinese-script and then nearly spherical particles,reduce the size of Fe-rich phase,and refine the grain with increase of high angle grain boundaries(HAGBs).These microstructure changes enhance the strength of the AA5052 alloy through Sc addition.The ductility of the alloy is obviously improved because the addition of a lower amount of Sc changes the morphology of Fe-rich phase from needle-like into a Chinese-script,and it is subsequently reduced as a result of significant increase in HAGBs with increasing Sc content.
基金Project(2012CB619500)supported by the National Basic Research Program of China
文摘The dynamic recrystallization behavior of 7085 aluminum alloy during hot compression at various temperatures (573?723 K) and strain rates (0.01-10 s^-1) was studied by electron back scattered diffraction (EBSD), electro-probe microanalyzer (EPMA) and transmission electron microscopy (TEM). It is shown that dynamic recovery is the dominant softening mechanism at high Zener?Hollomon (Z) values, and dynamic recrystallization tends to appear at low Z values. Hot compression with ln Z=24.01 (723 K, 0.01 s?1) gives rise to the highest fraction of recrystallization of 10.2%. EBSD results show that the recrystallized grains are present near the original grain boundaries and exhibit similar orientation to the deformed grain. Strain-induced boundary migration is likely the mechanism for dynamic recrystallization. The low density of Al3Zr dispersoids near grain boundaries can make contribution to strain-induced boundary migration.
基金Project(2012CB619500)supported by the National Basic Research Program of ChinaProject supported by Yuying Project of Central South University
文摘The effect of homogenization time on quench sensitivity of a cast 7085 aluminum alloy was investigated by means of end-quenching test, optical microscope (OM), scanning electron microscope (SEM) and transmission electron microscope (TEM). The results show that with the increase of homogenization time from 48 h to 384 h, quench sensitivity increased slightly as the largest difference in the hardness was increased from 5.2% to 6.9% in the end-quenched and aged specimens. Prolonging homogenization had little effect on the grain structure, but improved the dissolution of soluble T phase and resulted in larger Al3Zr dispersoids with a low number density. Some small quench-induced η phase particles on Al3Zr dispersoids were observed inside grains during slow quenching, which decreased hardness after subsequent aging. The change in the character of Al3Zr dispersoids exerted slight influence on quench sensitivity.
基金Project (2011CB606302-1) supported by the National Basic Research Program of China
文摘The semi-solid slurry of 7075 aluminum alloy was prepared by a serpentine pouring channel (SCP). Influences of pouring temperature and the number of turns on the microstructure of semi-solid 7075 alloy slurry were investigated. The results demonstrated that the semi-solid 7075 aluminum alloy slurry with satisfied quality could be generated by a serpentine pouring channel when the pouring temperature was in the range of 680-700 ℃. At a given pouring temperature, the equivalent size of the primaryα(Al) grains decreased and the shape factor increased with the increase of the number of turns. During the slurry preparation of semi-solid 7075 aluminum alloy, the flow direction of alloy melt changed many times when it flowed in a curved and closed serpentine channel. With the effect of“stirring”in it , the primary nuclei gradually evolved into spherical and near-spherical grains.
基金Project(0211002605132)supported by Institute of Multipurpose Utilization of Mineral Resources,Chinese Academy of Geological Sciences,ChinaProject(0211005303101)supported by the Fundamental Research Funds for the Central Universities,China+1 种基金Project(2010BB4074)supported by Natural Science Foundation Project of CQ CSTC,ChinaProject(2010ZD-02)supported by State Key Laboratory for Advanced Metals and Materials,China
文摘The Al-9Zn-2.8Mg-2.5Cu-xZr-ySc alloys (x=0, 0.15%, 0.15%; y=0, 0.05%, 0.15%), produced by low-frequent electromagnetic casting technology, were subjected to homogenization treatment, hot extrusion, solution and aging treatment. The effects of minor Sc and Zr addition on microstructure, recrystallization and properties of alloys were studied by optical microscopy (OM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results show that Sc and Zr addition can refine grains of the as-cast alloy by precipitation of primary Al3(Sc,Zr) particles formed during solidification as heterogeneous nuclei. Secondary Al3(Sc,Zr) precipitates formed during homogenization treatment strongly pin the movement of dislocation and subgrain boundaries, which can effectively inhibit the alloys recrystallization. Compared with the alloy without Sc and Zr addition, the Al-Zn-Mg-Cu-Zr alloy with 0.05%Sc and 0.15%Zr shows the increase in tensile strength and yield strength by 172 MPa and 218 MPa, respectively. Strengthening comes from the contributions of precipitation, substructure and grain refining.
基金Project(2011CB606300)supported by the National Basic Research Program of ChinaProject(5077400)supported by the National Natural Science Foundation of China
文摘The semi-solid slurry of A380 aluminum alloy was prepared by the serpentine channel. The effects of pouring temperature, curve number and curve diameter of the serpentine channel on the microstructure of the semi-solid A380 aluminum alloy slurry were investigated. The results show that the satisfactory semi-solid A380 aluminum alloy slurry could be obtained when the pouring temperature ranged from 630 to 650 °C. Under the same conditions, increasing the curve number or reducing the curve diameter of the serpentine channel would decrease the average diameter and increase the shape factor of the primary α(Al) grains. The "self-stirring" of the alloy melt in the serpentine channel was beneficial to the ripening of the dendrites and the spheroidizing of the primary α(Al) grains.
基金Project (2006AA03Z115) supported by the National High-tech Research and Development Program of ChinaProject (2006CB605203) supported by the National Basic Research Program of ChinaProject (50774007) supported by the National Natural Science Foundation of China
文摘Semi-solid A356 aluminum alloy slurry was prepared by using serpentine channel pouring process, and the influences of the channel diameters and pouring temperatures on the semi-solid A356 aluminum alloy slurry were investigated. The experimental results show that when the channel diameter is 20 and 25 mm, respectively, and the pouring temperature is 640-680 ℃, the average diameter of primary α(Al) grains in the prepared A356 aluminum alloy slurry is 50-75 and 55-78 μm, respectively, and the average shape factor of primary α(Al) grains is 0.89-0.76 and 0.86-0.72, respectively. With the decline in the pouring temperature, the microstructure of semi-solid A356 aluminum alloy slurry is more desirable and a serpentine channel with smaller diameter is also advantageous to the microstructure imProvement. During the preparation of semi-solid A356 aluminum alloy slurry, a large number of nuclei can be produced by the chilling effect of the serpentine channel, and owing to the combined effect of the chilled nuclei separation and melt self-stirring, primary α(Al) nuclei can be multiplied and spheroidized finally.
基金Projects(51075104,50975054) supported by the National Natural Science Foundation of ChinaProject(2010RFQXG020) supported by the Harbin Excellence Talents Program,China
文摘Ultrasonic-assisted soldering of 2024 aluminum alloys using a filler metal of Zn-5Al alloy was investigated at the temperature of 400 ℃,which is lower than the solution strengthening temperature of Al-Cu alloys.The ultrasonic vibration with power of 200 W and vibration amplitude of 15 μm at the frequency of 21 kHz was applied on the top samples.The ultrasonic vibration promoted the dissolution of Al elements in the base metal.The reduction of volume fraction of the eutectic phases in the bonds was investigated by increasing ultrasonic vibration time.As the ultrasonic vibration time increased from 3 s to 30 s,the volume fraction of the eutectic phase in the bonds decreased from 12.9% to 0.9%,and the shear strength of the joints was up to 149-153 MPa,increased by 20%.The improvement of the mechanical properties of joints was discussed based on the modulus and hardness of the phases in the bonds and the fracture of the joints.
基金This research was financially supported by the National Natural Science Foundation of China(Grant No.31902103)the Dapeng District Industry Development Special Funds(Grant No.KY20180218)the Shenzhen Science and Technology Projects(Grant No.JSGG20160608160725473)in China.
文摘Aluminum(Al)toxicity in acid soils is a significant limitation to crop production worldwide,as 13%of the world's rice is produced in acid soil with high Al content.Rice is likely the most Al-resistant cereal and also the cereal,where Al resistance is the most genetically complex with external detoxification and internal tolerance.Many Al-resistance genes in rice have been cloned,including Al resistance transcription factor 1(ART1)and other transcription factors,organic acid transporter genes,and metal ion transporter gene.This review summarized the recent characterized genes affecting Al tolerance in rice and the interrelationships between Al and other plant nutrients.
文摘The effect of SiC particles reinforcement with average size of 1, 5, 20 and 50 μm and volume fraction of 5%, 10% and 15% on the microstructure and tribological properties of Al-based composite was investigated. Composites were produced by applying compocasting process. Tribological properties of the unreinforced alloy and composites were studied using pin-on-disc wear tester, under dry sliding conditions at different specific loads. The influence of secondary mechanical processing with different rolling reductions on the dry sliding wear characteristics of Al matrix composites was also assessed. Hardness measurement and scanning electron microscopy were used for microstructural characterization and investigation of worn surfaces and wear debris. The proper selection of process parameter such as pouring temperature, stirring speed, stirring time, pre-heated temperature of reinforcement can all influence the quality of the fabricated composites. The porosity level of composite should be minimized and the chemical reaction between the reinforcement and matrix should be avoided.