Structural features, aging behavior, precipitation kinetics and mechanical properties of a 6013 Al–Mg–Si aluminum alloy subjected to equal channel angular pressing (ECAP) at different temperatures were comparative...Structural features, aging behavior, precipitation kinetics and mechanical properties of a 6013 Al–Mg–Si aluminum alloy subjected to equal channel angular pressing (ECAP) at different temperatures were comparatively investigated with that in conventional static aging by quantitative X-ray diffraction (XRD) measurements, differential scanning calorimetry (DSC) and tensile tests. Average grain sizes measured by XRD are in the range of 66-112 nm while the average dislocation density is in the range of 1.20×10^14-1.70×10^14 m^-2 in the deformed alloy. The DSC analysis reveals that the precipitation kinetics in the deformed alloy is much faster as compared with the peak-aged sample due to the smaller grains and higher dislocation density developed after ECAP. Both the yield strength (YS) and ultimate tensile strength (UTS) are dramatically increased in all the ECAP samples as compared with the undeformed counterparts. The maximum strength appears in the samples ECAP treated at room temperature and the maximum YS is about 1.6 times that of the statically peak-aged sample. The very high strength in the ECAP alloy is suggested to be related to the grain size strengthening and dislocation strengthening, as well as the precipitation strengthening contributing from the dynamic precipitation during ECAP.展开更多
A numerical analysis of mechanical behavior of aluminum alloy sheet under cyclic plastic deformation was investigated.Forming limit at fracture was derived from Cockcroft-Latham ductile damage criterion.The strain pat...A numerical analysis of mechanical behavior of aluminum alloy sheet under cyclic plastic deformation was investigated.Forming limit at fracture was derived from Cockcroft-Latham ductile damage criterion.The strain path of bending center of incremental roller hemming could be accepted as a kind of plane strain bending deformation process.Incremental rope roller hemming could be used to alleviate ductile fracture behavior by changing the stress state of the hemming-effected area.SEM observation on the fracture surface indicates that cyclic plastic deformation affects ductile fracture mechanism.展开更多
A comparative study of the structure and mechanical behavior of an Al-5 Mg-0.18 Mn-0.2 Sc-0.08 Zr-0.01 Fe-0.01 Si(wt.%)alloy ingot subjected to multidirectional isothermal forging(MIF)to a strain of 12 or equal-channe...A comparative study of the structure and mechanical behavior of an Al-5 Mg-0.18 Mn-0.2 Sc-0.08 Zr-0.01 Fe-0.01 Si(wt.%)alloy ingot subjected to multidirectional isothermal forging(MIF)to a strain of 12 or equal-channel angular pressing(ECAP)to a strain of 10 at 325℃,and subsequent warm and cold rolling(WR and CR)at 325 and 20℃,was performed.The results showed that the MIF process of ultrafine-grained structure with a(sub)grain size dUFG=2μm resulted in enhanced room-temperature ductility and superplastic elongation up to 2800%.Further grain refinement under WR as well as development of a heavily-deformed microstructure with high dislocation density by subsequent CR resulted in a yield/ultimate tensile strength increase from 235/360 MPa after MIF to 315/460 and 400/515 MPa after WR and CR,respectively.Simultaneously,WR led to improved superplastic elongation up to 4000%,while after CR the elongation remained sufficiently high(up to 1500%).Compared with MIF,ECAP resulted in more profound grain refinement(dUFG=1μm),which promoted higher strength and superplastic properties.However,this effect smoothed down upon WR,ensuring equal properties of the processed sheets.CR of the ECAPed alloy,in contrast,led to higher strengthening and slightly better superplastic behavior than those after CR following MIF.展开更多
A thickness strain model of aluminium alloy plate under plastic deformation,based on thin plate assumption was proposed.It is found that when ratio of stress fractions is constant during in-plane loading,ratios of str...A thickness strain model of aluminium alloy plate under plastic deformation,based on thin plate assumption was proposed.It is found that when ratio of stress fractions is constant during in-plane loading,ratios of strain components under various loading conditions are linearly related and these points of ratios form a η-η line.Under these simple loadings,strains in thickness direction can be easily calculated by the η-η line equation without integral and differential work.When the plate is under more complicated loading conditions,the thickness can be computed by the proposed optimization and piecewise calculation model.Validation computations indicate that the relative error of the results of the presented model is less than 0.75% compared with the proven theories and FE simulation.Therefore,the developed model can be applied to engineering calculation,e.g.pre-stretching analysis of aerospace aluminium thick plate,with acceptable accuracy.展开更多
In order to improve the prediction capability of spring-back in aluminum sheet metal forming, the influence of the plastic deformation on elastic modulus is considered when the material undergoes a large plastic defor...In order to improve the prediction capability of spring-back in aluminum sheet metal forming, the influence of the plastic deformation on elastic modulus is considered when the material undergoes a large plastic deformation. The present work focused on establishing a new model to accurately describe the relation of elastic modulus and plastic deformation. The tensile tests were performed to investigate the influence of plastic deformation on elastic modulus at low strain rate. Two different aluminum sheets were used, AA2024-T3 and LY12-CZ, and the thickness of sheet metals was 1.3 mm and 2.0 mm, respectively. In order to overcome the drawback, which is directly measuring the slope of tension curve to obtain elastic modulus, an extrapolation method was adopted. The proposal macroscopic piecewise sinusoidal function can accurately model the elastic modulus variation.展开更多
Strengthening of aluminium alloys 7xxx through the imposition of severe plastic deformation supplemented by ageing treatments is a challenge due to the limited workability of these alloys in cold deformation regimes.T...Strengthening of aluminium alloys 7xxx through the imposition of severe plastic deformation supplemented by ageing treatments is a challenge due to the limited workability of these alloys in cold deformation regimes.This study aims to comprehensively investigate the strengthening of aluminium alloy 7005 through the imposition of severe plastic deformation supplemented by two different ageing treatments:pre-deformation artificial ageing or postdeformation natural ageing.For this purpose,microstructure evolutions of the alloy processed through mentioned procedures were studied using X-ray diffraction and scanning electron microscopy while the alloy strengthening was evaluated using Vickers hardness measurement.Results show that a superlative strengthening is obtained through the imposition of severe plastic deformation supplemented by post-deformation natural ageing.For instance,the yield strength of the alloy increases to more than 400 MPa,about one-third greater than the counterpart amount after the usual T6 treatment.This superlative strength mainly occurs due to refinement of grains,an increase of dislocation density and an increase of volume fraction of the precipitates that appeared during natural ageing.Considering the applied models,it is inferred that the increase of volume fraction of precipitates that appeared during natural ageing has a determinative role in the strengthening of the alloy.展开更多
The hot deformation behavior and microstructure evolution of 6082 aluminum alloy fabricated through squeeze casting(SC)under different pressures were studied.The alloy was subjected to hot compression tests and 3D hot...The hot deformation behavior and microstructure evolution of 6082 aluminum alloy fabricated through squeeze casting(SC)under different pressures were studied.The alloy was subjected to hot compression tests and 3D hot processing maps were established.The microstructure evolution was studied by optical microscope(OM),scanning electron microscope(SEM),and electron backscattered diffraction(EBSD).It is found that more dynamic recrystallization(DRX)grains are generated during the deformation of the specimen fabricated under higher SC pressure.At high temperature the effect of SC pressure on microstructure evolution weakens due to the dissolution of second phase particles.In addition,uneven second phase particles in specimens fabricated under higher SC pressure compressed with low temperature and middle strain rate would result in flow localization instability.Finally,the optimum deformation conditions for the 6082 aluminum alloy fabricated by SC were obtained at the temperatures of 430−500℃ and the strain rates of 0.01−1 s^(−1).展开更多
Dual equal channel lateral extrusion (DECLE), as a severe plastic deformation (SPD) process, was employed forimproving the mechanical properties of AA5083 aluminum alloy. Several experiments were conducted to study th...Dual equal channel lateral extrusion (DECLE), as a severe plastic deformation (SPD) process, was employed forimproving the mechanical properties of AA5083 aluminum alloy. Several experiments were conducted to study the influences of theroute type, namely A and B, and pass number on mechanical properties of the material. The process was conducted up to 6 passeswith decreasing process temperature, specifically from 573 to 473 K. Supplementary experiments involving metallography, hardnessand tensile tests were carried out in order to evaluate the effects of the process variables. The hardness measurements exhibitedreasonably uniform distributions within the product with a maximum increase of 64% via a 6-pass operation. The yield and ultimatestrengths also amended 107% and 46%, respectively. These significant improvements were attributed to the severe shear deformationof grains and decreasing pass temperature, which intensified the grain refinement. TEM images showed an average grain sizereduction from 100 μm for the annealed billet to 200 nm after 6 passes of DECLE. Finally, the experimental findings for routes A andB were compared and discussed and some important conclusions were drawn.展开更多
3D numerical model for friction stir welding (FSW) was developed by using ABAQUS software considering the plastic deformation heat. Effects of the rotation and welding speeds on the temperature field of FSW 2024-73 ...3D numerical model for friction stir welding (FSW) was developed by using ABAQUS software considering the plastic deformation heat. Effects of the rotation and welding speeds on the temperature field of FSW 2024-73 aluminum alloy were systematicaUy investigated. The temperature measurement was performed to validate the reliability of the model. The simulation results are in good agreement with the experiments. Results show that changing the rotation speed has no influence on the time for reaching the peak temperature at certain point in the workpiece at a constant welding speed. While increasing the welding speed has significant effect on the time for reaching the peak temperature but the value of peak temperature changes little.展开更多
The research on fluctuation and inhomogeneity of internal stress of aluminum alloy thick plate is theoretical and technological base for stress control technology. By using X-ray diffraction technique and mechanical t...The research on fluctuation and inhomogeneity of internal stress of aluminum alloy thick plate is theoretical and technological base for stress control technology. By using X-ray diffraction technique and mechanical test method, aluminum alloy with typical fine sub-grains, coarse recrystallized grains, and second phase was analyzed; the interactive mechanical model between grains was built for analysis of variation of internal stress within the local micro structure by imitating the actual distribution of grains. The experimental result shows that the mechanical model can effectively explain the reason for fluctuation of microscopic stress, which also proves that the inhomogeneous distribution of metal organization is the cause for the complex distribution of microscopic stress. The model can well describe stress distribution of thick plate caused by thermal deformation. Besides, it well describes mechanism of stress fluctuation.展开更多
Microstructure evolution and dislocation configurations in nanostructured Al–Mg alloys processed by high pressure torsion (HPT) were analyzed by transmission electron microscopy (TEM) and high-resolution TEM (HR...Microstructure evolution and dislocation configurations in nanostructured Al–Mg alloys processed by high pressure torsion (HPT) were analyzed by transmission electron microscopy (TEM) and high-resolution TEM (HRTEM). The results show that the grains less than 100 nm have sharp grain boundaries (GBs) and are completely free of dislocations. In contrast, a high density of dislocation as high as 1017 m^-2 exists within the grains larger than 200 nm and these larger grains are usually separated into subgrains and dislocation cells. The dislocations are 60° full dislocations with Burgers vectors of 1/2〈110〉and most of them appear as dipoles and loops. The microtwins and stacking faults (SFs) formed by the Shockley partials from the dissociation of both the 60° mixed dislocation and 0° screw dislocation in ultrafine grains were simultaneously observed by HRTEM in the HPT Al–Mg alloys. These results suggest that partial dislocation emissions, as well as the activation of partial dislocations could also become a deformation mechanism in ultrafine-grained aluminum during severe plastic deformation. The grain refinement mechanism associated with the very high local dislocation density, the dislocation cells and the non-equilibrium GBs, as well as the SFs and microtwins in the HPT Al-Mg alloys were proposed.展开更多
Three-layer6009/7050/6009aluminum alloy clad slab was fabricated by an innovative direct-chill casting process.To study the response of the clad slab to plastic deformation and heat treatments,homogenization annealing...Three-layer6009/7050/6009aluminum alloy clad slab was fabricated by an innovative direct-chill casting process.To study the response of the clad slab to plastic deformation and heat treatments,homogenization annealing,hot rolling,solution and aging were successively performed on the as-cast6009/7050/6009clad samples.The results revealed that excellent metallurgical bonding between7050alloy layer and6009alloy layer was achieved under optimal parameters.The clad ratio obviously decreased when the annealed sample was rolled to55%hot reduction level,and then changed slightly with further rolling.Furthermore,the content of rodlike Zn-rich phases increased significantly in7050alloy layer in the homogenized clad samples after rolling at55%,65%and75%hot reduction levels,and the higher level of hot reduction resulted in narrower diffusion layer.Subsequent solution and aging significantly improved the hardness in7050alloy layer,interfaces and6009alloy layers of the rolled samples except for the thin side for the75%hot reduction sample.展开更多
The microstructural evolution during friction stir welding(FSW) has long been studied only using one single welding parameter. Conclusions were usually made based on the final microstructure observation and hence were...The microstructural evolution during friction stir welding(FSW) has long been studied only using one single welding parameter. Conclusions were usually made based on the final microstructure observation and hence were one-sided. In this study, we used the "take-action" technique to freeze the microstructure of an Al-Mg-Si alloy during FSW, and then systematically investigated the microstructures along the material flow path under different tool rotation rates and cooling conditions. A universal characteristic of the microstructural evolution including four stages was identified, i.e. dynamic recovery(DRV), dislocation multiplication, new grain formation and grain growth. However, the dynamic recrystallization(DRX)mechanisms in FSW depended on the welding condition. For the air cooling condition, the DRX mechanisms were related to continuous DRX associated with subgrain rotation and geometric DRX at high and low rotation rates, respectively. Under the water cooling condition, we found a new DRX mechanism associated with the progressive lattice rotation resulting from the pinning of the second-phase particles.Based on the analyses of the influencing factors of grain refinement, it was clearly demonstrated that the delay of DRV and DRX was the efficient method to refine the grains during FSW. Besides, ultra-high strain rate and a short duration at high temperatures were the key factors to produce an ultrafine-grained material.展开更多
Al-8.5Fe-1.3V-1.7Si alloy was prepared by spray deposition and hot extrusion. The high temperature plastic deformation behavior of the spray deposited Al-8.5Fe-1.3V-1.7Si alloy was investigated in the strain rate rang...Al-8.5Fe-1.3V-1.7Si alloy was prepared by spray deposition and hot extrusion. The high temperature plastic deformation behavior of the spray deposited Al-8.5Fe-1.3V-1.7Si alloy was investigated in the strain rate range of 2.77×10-4-2.77×10-2 s-1 and temperature range of 350-550 ℃ by Gleebe-1500 thermomechanical simulator. The mechanism of the high temperature plastic deformation of the alloys was studied by TEM associated with the analysis of Rosler-Artz physical constitutive relationship based on the model of dislocation detaching from dispersion particles. The results show that Al-Fe-V-Si alloy has low strain hardening coefficient, and even exhibits work softening. Stress exponent n and activation energy Q were calculated based on Zener-Hollomon relation and Rosler-Artz physical model respectively. The Rosler-Artz physical model can give a good prediction for the abnormal behavior of high temperature deformation of spray deposited Al-Fe-V-Si alloy, that is, n larger than 8 and Q higher than 142 kJ/mol. However, because of the highly refined microstructure, the high temperature deformation behavior of spray deposited Al-Fe-V-Si alloy deviates more or less from the law predicted by using Rosler-Artz physical model.展开更多
Deformation twins and stacking faults were observed in nanostructure A1-Mg alloys subjected to high pressure torsion. These observations are surprising because deformation twinnings have never been observed in their c...Deformation twins and stacking faults were observed in nanostructure A1-Mg alloys subjected to high pressure torsion. These observations are surprising because deformation twinnings have never been observed in their coarse-grained counterparts under normal conditions. Experimental evidences are introduced on non-equilibrium grain boundaries, deformation twinnings and partial dislocation emissions from grain boundaries. Some of these features can be explained by the results reported from molecular-dynamics simulations of pure FCC metals. Special emphasis is laid on the recent observations of high density hexagonal and rhombic shaped nanostructures with an average size of 3 nm in the A1-Mg alloys processed by high pressure torsion. A possible formation process of these nanostructures is proposed based on molecular-dynamics simulations.展开更多
基金Project(BK2012715)supported by the Basic Research Program(Natural Science Foundation)of Jiangsu Province,ChinaProject(14KJA430002)supported by the Key University Science Research Project of Jiangsu Province,China+3 种基金Project(50971087)supported by the National Natural Science Foundation of ChinaProjects(11JDG070,11JDG140)supported by the Senior Talent Research Foundation of Jiangsu University,ChinaProject(hsm1301)supported by the Foundation of the Jiangsu Province Key Laboratory of High-end Structural Materials,ChinaProject(Kjsmcx2011004)supported by the Foundation of the Jiangsu Province Key Laboratory of Materials Tribology,China
文摘Structural features, aging behavior, precipitation kinetics and mechanical properties of a 6013 Al–Mg–Si aluminum alloy subjected to equal channel angular pressing (ECAP) at different temperatures were comparatively investigated with that in conventional static aging by quantitative X-ray diffraction (XRD) measurements, differential scanning calorimetry (DSC) and tensile tests. Average grain sizes measured by XRD are in the range of 66-112 nm while the average dislocation density is in the range of 1.20×10^14-1.70×10^14 m^-2 in the deformed alloy. The DSC analysis reveals that the precipitation kinetics in the deformed alloy is much faster as compared with the peak-aged sample due to the smaller grains and higher dislocation density developed after ECAP. Both the yield strength (YS) and ultimate tensile strength (UTS) are dramatically increased in all the ECAP samples as compared with the undeformed counterparts. The maximum strength appears in the samples ECAP treated at room temperature and the maximum YS is about 1.6 times that of the statically peak-aged sample. The very high strength in the ECAP alloy is suggested to be related to the grain size strengthening and dislocation strengthening, as well as the precipitation strengthening contributing from the dynamic precipitation during ECAP.
基金Project(2010CB731703) supported by the National Basic Research Program of China Project(0804) supported by the Shanghai Automotive Industry Corporation Foundation,ChinaProject(MSV-2010-03) supported by State Key Laboratory of Mechanical System and Vibration,Shanghai Jiao Tong University,China
文摘A numerical analysis of mechanical behavior of aluminum alloy sheet under cyclic plastic deformation was investigated.Forming limit at fracture was derived from Cockcroft-Latham ductile damage criterion.The strain path of bending center of incremental roller hemming could be accepted as a kind of plane strain bending deformation process.Incremental rope roller hemming could be used to alleviate ductile fracture behavior by changing the stress state of the hemming-effected area.SEM observation on the fracture surface indicates that cyclic plastic deformation affects ductile fracture mechanism.
基金financial supports from the Russian Science Foundation under grant No.16-19-10152P(the alloy MIF processing and room-temperature mechanical testing)by the Ministry of Science and Higher Education of Russia under the state assignment of IMSP RAS(ECAP and analysis of superplasticity).
文摘A comparative study of the structure and mechanical behavior of an Al-5 Mg-0.18 Mn-0.2 Sc-0.08 Zr-0.01 Fe-0.01 Si(wt.%)alloy ingot subjected to multidirectional isothermal forging(MIF)to a strain of 12 or equal-channel angular pressing(ECAP)to a strain of 10 at 325℃,and subsequent warm and cold rolling(WR and CR)at 325 and 20℃,was performed.The results showed that the MIF process of ultrafine-grained structure with a(sub)grain size dUFG=2μm resulted in enhanced room-temperature ductility and superplastic elongation up to 2800%.Further grain refinement under WR as well as development of a heavily-deformed microstructure with high dislocation density by subsequent CR resulted in a yield/ultimate tensile strength increase from 235/360 MPa after MIF to 315/460 and 400/515 MPa after WR and CR,respectively.Simultaneously,WR led to improved superplastic elongation up to 4000%,while after CR the elongation remained sufficiently high(up to 1500%).Compared with MIF,ECAP resulted in more profound grain refinement(dUFG=1μm),which promoted higher strength and superplastic properties.However,this effect smoothed down upon WR,ensuring equal properties of the processed sheets.CR of the ECAPed alloy,in contrast,led to higher strengthening and slightly better superplastic behavior than those after CR following MIF.
基金Project(51475483)supported by the National Natural Science Foundation of ChinaProject(2014FJ3002)supported by Science and Technology Project of Hunan Province,ChinaProject supported by Aid Program for Science and Technology Innovative Research Team in Higher Educational Institutions of Hunan Province,China
文摘A thickness strain model of aluminium alloy plate under plastic deformation,based on thin plate assumption was proposed.It is found that when ratio of stress fractions is constant during in-plane loading,ratios of strain components under various loading conditions are linearly related and these points of ratios form a η-η line.Under these simple loadings,strains in thickness direction can be easily calculated by the η-η line equation without integral and differential work.When the plate is under more complicated loading conditions,the thickness can be computed by the proposed optimization and piecewise calculation model.Validation computations indicate that the relative error of the results of the presented model is less than 0.75% compared with the proven theories and FE simulation.Therefore,the developed model can be applied to engineering calculation,e.g.pre-stretching analysis of aerospace aluminium thick plate,with acceptable accuracy.
基金Project(06-13) supported by the Foundation of State Key Laboratory of Plastic Forming Simulation and Die & Mould Technology, China
文摘In order to improve the prediction capability of spring-back in aluminum sheet metal forming, the influence of the plastic deformation on elastic modulus is considered when the material undergoes a large plastic deformation. The present work focused on establishing a new model to accurately describe the relation of elastic modulus and plastic deformation. The tensile tests were performed to investigate the influence of plastic deformation on elastic modulus at low strain rate. Two different aluminum sheets were used, AA2024-T3 and LY12-CZ, and the thickness of sheet metals was 1.3 mm and 2.0 mm, respectively. In order to overcome the drawback, which is directly measuring the slope of tension curve to obtain elastic modulus, an extrapolation method was adopted. The proposal macroscopic piecewise sinusoidal function can accurately model the elastic modulus variation.
基金the research board of Ferdowsi University of Mashhad(FUM)for the financial support and the provision of research facilities used in this work through grant No.3/41681.
文摘Strengthening of aluminium alloys 7xxx through the imposition of severe plastic deformation supplemented by ageing treatments is a challenge due to the limited workability of these alloys in cold deformation regimes.This study aims to comprehensively investigate the strengthening of aluminium alloy 7005 through the imposition of severe plastic deformation supplemented by two different ageing treatments:pre-deformation artificial ageing or postdeformation natural ageing.For this purpose,microstructure evolutions of the alloy processed through mentioned procedures were studied using X-ray diffraction and scanning electron microscopy while the alloy strengthening was evaluated using Vickers hardness measurement.Results show that a superlative strengthening is obtained through the imposition of severe plastic deformation supplemented by post-deformation natural ageing.For instance,the yield strength of the alloy increases to more than 400 MPa,about one-third greater than the counterpart amount after the usual T6 treatment.This superlative strength mainly occurs due to refinement of grains,an increase of dislocation density and an increase of volume fraction of the precipitates that appeared during natural ageing.Considering the applied models,it is inferred that the increase of volume fraction of precipitates that appeared during natural ageing has a determinative role in the strengthening of the alloy.
基金financially supported by the National Natural Science Foundation of China (Nos.52090043,51725504)the Key Research and Development Program of Hubei Province,China (No.2020BAB040)the Fundamental Research Funds for the Central Universities,China (No.2021GCRC003)。
文摘The hot deformation behavior and microstructure evolution of 6082 aluminum alloy fabricated through squeeze casting(SC)under different pressures were studied.The alloy was subjected to hot compression tests and 3D hot processing maps were established.The microstructure evolution was studied by optical microscope(OM),scanning electron microscope(SEM),and electron backscattered diffraction(EBSD).It is found that more dynamic recrystallization(DRX)grains are generated during the deformation of the specimen fabricated under higher SC pressure.At high temperature the effect of SC pressure on microstructure evolution weakens due to the dissolution of second phase particles.In addition,uneven second phase particles in specimens fabricated under higher SC pressure compressed with low temperature and middle strain rate would result in flow localization instability.Finally,the optimum deformation conditions for the 6082 aluminum alloy fabricated by SC were obtained at the temperatures of 430−500℃ and the strain rates of 0.01−1 s^(−1).
基金partially supported by the Iran National Science Foundation(INSF) with grant number 92014140
文摘Dual equal channel lateral extrusion (DECLE), as a severe plastic deformation (SPD) process, was employed forimproving the mechanical properties of AA5083 aluminum alloy. Several experiments were conducted to study the influences of theroute type, namely A and B, and pass number on mechanical properties of the material. The process was conducted up to 6 passeswith decreasing process temperature, specifically from 573 to 473 K. Supplementary experiments involving metallography, hardnessand tensile tests were carried out in order to evaluate the effects of the process variables. The hardness measurements exhibitedreasonably uniform distributions within the product with a maximum increase of 64% via a 6-pass operation. The yield and ultimatestrengths also amended 107% and 46%, respectively. These significant improvements were attributed to the severe shear deformationof grains and decreasing pass temperature, which intensified the grain refinement. TEM images showed an average grain sizereduction from 100 μm for the annealed billet to 200 nm after 6 passes of DECLE. Finally, the experimental findings for routes A andB were compared and discussed and some important conclusions were drawn.
文摘3D numerical model for friction stir welding (FSW) was developed by using ABAQUS software considering the plastic deformation heat. Effects of the rotation and welding speeds on the temperature field of FSW 2024-73 aluminum alloy were systematicaUy investigated. The temperature measurement was performed to validate the reliability of the model. The simulation results are in good agreement with the experiments. Results show that changing the rotation speed has no influence on the time for reaching the peak temperature at certain point in the workpiece at a constant welding speed. While increasing the welding speed has significant effect on the time for reaching the peak temperature but the value of peak temperature changes little.
基金Funded by the Guangxi Natural Science Foundation,China(No.2012GXNSFBA053150)the Open Research Fund of Key Laboratory of High Performance Complex Manufacturing(Central South University),China(No.HPCM-2013-04)the Major State Basic Research Development Program of China(No.2010CB731703)
文摘The research on fluctuation and inhomogeneity of internal stress of aluminum alloy thick plate is theoretical and technological base for stress control technology. By using X-ray diffraction technique and mechanical test method, aluminum alloy with typical fine sub-grains, coarse recrystallized grains, and second phase was analyzed; the interactive mechanical model between grains was built for analysis of variation of internal stress within the local micro structure by imitating the actual distribution of grains. The experimental result shows that the mechanical model can effectively explain the reason for fluctuation of microscopic stress, which also proves that the inhomogeneous distribution of metal organization is the cause for the complex distribution of microscopic stress. The model can well describe stress distribution of thick plate caused by thermal deformation. Besides, it well describes mechanism of stress fluctuation.
基金Project(BK2012715)supported by the Basic Research Program(Natural Science Foundation)of Jiangsu Province,ChinaProject(14KJA430002)supported by the Key University Science Research Project of Jiangsu Province,China+3 种基金Project(50971087)supported by the National Natural Science Foundation of China,ChinaProjects(11JDG070,11JDG140)supported by the Senior Talent Research Foundation of Jiangsu University,ChinaProject(hsm1301)supported by the Foundation of the Jiangsu Province Key Laboratory of High-end Structural Materials,ChinaProject(Kjsmcx2011004)supported by the Foundation of the Jiangsu Province Key Laboratory of Materials Tribology,China
文摘Microstructure evolution and dislocation configurations in nanostructured Al–Mg alloys processed by high pressure torsion (HPT) were analyzed by transmission electron microscopy (TEM) and high-resolution TEM (HRTEM). The results show that the grains less than 100 nm have sharp grain boundaries (GBs) and are completely free of dislocations. In contrast, a high density of dislocation as high as 1017 m^-2 exists within the grains larger than 200 nm and these larger grains are usually separated into subgrains and dislocation cells. The dislocations are 60° full dislocations with Burgers vectors of 1/2〈110〉and most of them appear as dipoles and loops. The microtwins and stacking faults (SFs) formed by the Shockley partials from the dissociation of both the 60° mixed dislocation and 0° screw dislocation in ultrafine grains were simultaneously observed by HRTEM in the HPT Al–Mg alloys. These results suggest that partial dislocation emissions, as well as the activation of partial dislocations could also become a deformation mechanism in ultrafine-grained aluminum during severe plastic deformation. The grain refinement mechanism associated with the very high local dislocation density, the dislocation cells and the non-equilibrium GBs, as well as the SFs and microtwins in the HPT Al-Mg alloys were proposed.
基金Projects(51375070,51574058) supported by the National Natural Science Foundation of China
文摘Three-layer6009/7050/6009aluminum alloy clad slab was fabricated by an innovative direct-chill casting process.To study the response of the clad slab to plastic deformation and heat treatments,homogenization annealing,hot rolling,solution and aging were successively performed on the as-cast6009/7050/6009clad samples.The results revealed that excellent metallurgical bonding between7050alloy layer and6009alloy layer was achieved under optimal parameters.The clad ratio obviously decreased when the annealed sample was rolled to55%hot reduction level,and then changed slightly with further rolling.Furthermore,the content of rodlike Zn-rich phases increased significantly in7050alloy layer in the homogenized clad samples after rolling at55%,65%and75%hot reduction levels,and the higher level of hot reduction resulted in narrower diffusion layer.Subsequent solution and aging significantly improved the hardness in7050alloy layer,interfaces and6009alloy layers of the rolled samples except for the thin side for the75%hot reduction sample.
基金supported by the National Natural Science Foundation of China under Grant Nos.51331008,51471171 and U1760201
文摘The microstructural evolution during friction stir welding(FSW) has long been studied only using one single welding parameter. Conclusions were usually made based on the final microstructure observation and hence were one-sided. In this study, we used the "take-action" technique to freeze the microstructure of an Al-Mg-Si alloy during FSW, and then systematically investigated the microstructures along the material flow path under different tool rotation rates and cooling conditions. A universal characteristic of the microstructural evolution including four stages was identified, i.e. dynamic recovery(DRV), dislocation multiplication, new grain formation and grain growth. However, the dynamic recrystallization(DRX)mechanisms in FSW depended on the welding condition. For the air cooling condition, the DRX mechanisms were related to continuous DRX associated with subgrain rotation and geometric DRX at high and low rotation rates, respectively. Under the water cooling condition, we found a new DRX mechanism associated with the progressive lattice rotation resulting from the pinning of the second-phase particles.Based on the analyses of the influencing factors of grain refinement, it was clearly demonstrated that the delay of DRV and DRX was the efficient method to refine the grains during FSW. Besides, ultra-high strain rate and a short duration at high temperatures were the key factors to produce an ultrafine-grained material.
文摘Al-8.5Fe-1.3V-1.7Si alloy was prepared by spray deposition and hot extrusion. The high temperature plastic deformation behavior of the spray deposited Al-8.5Fe-1.3V-1.7Si alloy was investigated in the strain rate range of 2.77×10-4-2.77×10-2 s-1 and temperature range of 350-550 ℃ by Gleebe-1500 thermomechanical simulator. The mechanism of the high temperature plastic deformation of the alloys was studied by TEM associated with the analysis of Rosler-Artz physical constitutive relationship based on the model of dislocation detaching from dispersion particles. The results show that Al-Fe-V-Si alloy has low strain hardening coefficient, and even exhibits work softening. Stress exponent n and activation energy Q were calculated based on Zener-Hollomon relation and Rosler-Artz physical model respectively. The Rosler-Artz physical model can give a good prediction for the abnormal behavior of high temperature deformation of spray deposited Al-Fe-V-Si alloy, that is, n larger than 8 and Q higher than 142 kJ/mol. However, because of the highly refined microstructure, the high temperature deformation behavior of spray deposited Al-Fe-V-Si alloy deviates more or less from the law predicted by using Rosler-Artz physical model.
基金Project(50971087) supported by the National Natural Science Foundation of ChinaProject supported by the Research Council of Norway under the Strategic University Program on Light Metals Technology Projects(67692, 71594) supported by the Hungarian National Science Foundation
文摘Deformation twins and stacking faults were observed in nanostructure A1-Mg alloys subjected to high pressure torsion. These observations are surprising because deformation twinnings have never been observed in their coarse-grained counterparts under normal conditions. Experimental evidences are introduced on non-equilibrium grain boundaries, deformation twinnings and partial dislocation emissions from grain boundaries. Some of these features can be explained by the results reported from molecular-dynamics simulations of pure FCC metals. Special emphasis is laid on the recent observations of high density hexagonal and rhombic shaped nanostructures with an average size of 3 nm in the A1-Mg alloys processed by high pressure torsion. A possible formation process of these nanostructures is proposed based on molecular-dynamics simulations.