The material used in this experiment was 3003 cladding aluminum alloy, the cladding metal was 4004 aluminum alloy. The aluminum plate was brazed by means of vacuum brazing. The microstructure in the brazing joint was ...The material used in this experiment was 3003 cladding aluminum alloy, the cladding metal was 4004 aluminum alloy. The aluminum plate was brazed by means of vacuum brazing. The microstructure in the brazing joint was studied by means of X-ray diffractometry (XRD) and transmission electron microscopy (TEM). The test result indicates that the suitable brazing technique parameters are brazing temperature, 628℃; keeping time, 10 min; vacuum degree, 6.5×10^-4 Pa. XRD test indicates that there are new intermetallic compounds different from the base metal. TEM analysis indicates that Cu2Mg and CuaMn2Mg are formed in the brazing joint. The shape of Cu2Mg is irregular and the shape of Cu3Mn2Mg is circle, and there are tiny particles in it.展开更多
A low-clad-ratio AA4045/AA3003 cladding billet was fabricated using a semi-continuous casting process and was subsequently extruded indirectly into a cladding pipe. The temperature distribution near the interface was ...A low-clad-ratio AA4045/AA3003 cladding billet was fabricated using a semi-continuous casting process and was subsequently extruded indirectly into a cladding pipe. The temperature distribution near the interface was measured. The microstructures, elemental distribution, Vickers hardness around the bonding interface, and the interfacial shear strength were examined. The results showed that the interface temperature rebounded when AA4045 melt contacted the supporting layer. The two alloys bonded well, with few defects, via the diffusion of Si and Mn in the temperature range from 569℃ to 632℃. The mean shear strength of the bonding interface was 82.3 MPa, which was greater than that of AA3003(75.8 MPa), indicating that the two alloys bonded with each other metallurgically via elemental interdiffusion. Moreover, no relative slip occurred between the two alloys during the extrusion process.展开更多
文摘The material used in this experiment was 3003 cladding aluminum alloy, the cladding metal was 4004 aluminum alloy. The aluminum plate was brazed by means of vacuum brazing. The microstructure in the brazing joint was studied by means of X-ray diffractometry (XRD) and transmission electron microscopy (TEM). The test result indicates that the suitable brazing technique parameters are brazing temperature, 628℃; keeping time, 10 min; vacuum degree, 6.5×10^-4 Pa. XRD test indicates that there are new intermetallic compounds different from the base metal. TEM analysis indicates that Cu2Mg and CuaMn2Mg are formed in the brazing joint. The shape of Cu2Mg is irregular and the shape of Cu3Mn2Mg is circle, and there are tiny particles in it.
基金the support of the Science and Technology Program of Guangzhou, China (No.2015B090926013)the doctoral foundation of the China Ministry of Education (No.20130042130001)
文摘A low-clad-ratio AA4045/AA3003 cladding billet was fabricated using a semi-continuous casting process and was subsequently extruded indirectly into a cladding pipe. The temperature distribution near the interface was measured. The microstructures, elemental distribution, Vickers hardness around the bonding interface, and the interfacial shear strength were examined. The results showed that the interface temperature rebounded when AA4045 melt contacted the supporting layer. The two alloys bonded well, with few defects, via the diffusion of Si and Mn in the temperature range from 569℃ to 632℃. The mean shear strength of the bonding interface was 82.3 MPa, which was greater than that of AA3003(75.8 MPa), indicating that the two alloys bonded with each other metallurgically via elemental interdiffusion. Moreover, no relative slip occurred between the two alloys during the extrusion process.