A hydroponic experiment was carried out to study the effect of aluminum (Al) and cadmium (Cd) on Al and mineral nutrient contents in plants and Al-induced organic acid exudation in two barley varieties with differ...A hydroponic experiment was carried out to study the effect of aluminum (Al) and cadmium (Cd) on Al and mineral nutrient contents in plants and Al-induced organic acid exudation in two barley varieties with different Al tolerance. Al- sensitive cv. Shang 70-119 had significantly higher Al content and accumulation in plants than Al-tolerant cv. Gebeina, especially in roots, when subjected to low pH (4.0) and Al treatments (100 μmol L^-1 Al and 100 μmol L^-1 Al +1.0 μmol L^-1 Cd). Cd addition increased Al content in plants exposed to Al stress. Both low pH and Al treatments caused marked reduction in Ca and Mg contents in all plant parts, P and K contents in the shoots and leaves, Fe, Zn and Mo contents in the leaves, Zn and B contents in the shoots, and Mn contents both in the roots and leaves. Moreover, changes in nutrient concentrations were greater in the plants exposed to both Al and Cd than in those exposed only to Al treatment. A dramatic enhancement of malate, citrate, and succinate was found in the plants exposed to 100 μmol L^-1 Al relative to the control, and the Al-tolerant cultivar had a considerable higher exudation of these organic acids than the Al-sensitive one, indicating that Al-induced enhancement of these organic acids is very likely to be associated with Al tolerance.展开更多
The self-developed taper barrel rheomoulding (TBR) machine for light alloy semi-solid slurry preparation was introduced.The semi-solid slurry was obtained from the intense shearing turbulence of the alloy melt in the ...The self-developed taper barrel rheomoulding (TBR) machine for light alloy semi-solid slurry preparation was introduced.The semi-solid slurry was obtained from the intense shearing turbulence of the alloy melt in the cause of solidification, which was further caused by the relative rotation of the internal and external taper barrel whose surface contained wale and groove.The heat transmission model of TBR process, the flow rules and the shearing model of the alloy melt were deduced.Taking A365 as experimental material, the microstructure evolution rules under different slurry preparation processes were analyzed.The results show that decreasing the pouring temperature of A365 alloy melt properly or increasing the shearing rate helps to obtain ideal semi-solid microstructure with the primary particle size of about 70 μm and the shape factor of above 0.8.展开更多
Various busbar configurations were built and modeled by the custom code based on the commercial package ANSYS for the 500 kA aluminum electrolysis cell.The configuration parameters,such as side riser entry ratio,numbe...Various busbar configurations were built and modeled by the custom code based on the commercial package ANSYS for the 500 kA aluminum electrolysis cell.The configuration parameters,such as side riser entry ratio,number of cathode bars connected to each riser,vertical location of side cathode busbar and short side cathode busbar,distance between rows of cells in potline,the number of neighboring cells,ratio of compensation busbar carried passing under cell and its horizontal location under cell along with large magnetohydrodynamic(MHD) computation based on the custom evaluation function were simulated and discussed.The results show that a cell with riser entry ratio of 11:9:8:9:11 and cathode busbar located at the level of aluminum solution,50% upstream cathode current passing under cell for magnetic field compensation,the distance between rows of 50 m is more stable.展开更多
Four barley genotypes (Tiantaiyangdamai, Xiyin2, Mimaill4 and Tai94-Ce6) were exposed to 0, 50, 100, and 150μM of Al-containing solution with pH 4.5, to determine the differences in growth inhibition , Al concentrati...Four barley genotypes (Tiantaiyangdamai, Xiyin2, Mimaill4 and Tai94-Ce6) were exposed to 0, 50, 100, and 150μM of Al-containing solution with pH 4.5, to determine the differences in growth inhibition , Al concentration and accumulation and mineral composition among genotypes. The results showed that Mimaill4 and Tai94-Ce6 had significantly higher Al concentration and accumulation than Tiantaiyangdami and Xiyin2, especially in roots, and the growth traits including root and shoot dry weights, shoot height, root length and tillers per plant were more inhibited in the former two genotypes. Al treatments caused a significant reduction of N, P, K, Ca, Mg and Mn content in both roots and shoots, of Cu in shoots; and a significant increase in Fe and Zn content in both roots and shoots, of Cu in roots. The changed rates of mineral content caused by Al treatments, in terms of the content in 150μM Al divided by the content in the control, differed significantly among four genotypes. Two Al-sensitive genotypes, Mimaill4 and Tai94-Ce6 had much greater changes in mineral content than other two Al-tolerant genotypes Tiantaiyangdamai and Xiyin2 when subjected to Al stress in comparison with the control. It is indicated that the Al-tolerant genotype is characterized by less uptake and accumulation of Al in roots and smaller disorders in mineral metabolism and ion homeostasis.展开更多
Copper-clad aluminum (CCA) flat bars produced by the continuous casting-rolling process were subjected to continuous induction heating annealing (CIHA), and the effects of induction heating temperature and holding...Copper-clad aluminum (CCA) flat bars produced by the continuous casting-rolling process were subjected to continuous induction heating annealing (CIHA), and the effects of induction heating temperature and holding time on the microstructure, interface, and mechanical properties of the fiat bars were investigated. The results showed that complete recrystallization of the copper sheath occurred under CIHA at 460℃ for 5 s, 480℃ for 3 s, or 500℃ for 1 s and that the average grain size in the copper sheath was approximately 10.0 μm. In the case of specimens subjected to CIHA at 460-500℃ for longer than 1 s, complete recrystallization occurred in the aluminum core. In the case of CIHA at 460-500℃ for 1-5 s, a continuous interracial layer with a thickness of 2.5-5.5 μm formed and the thickness mainly increased with increasing annealing temperature. After CIHA, the interracial layer consisted primarily of a Cu9A14 layer and a CuA12 layer; the average interface shear strength of the CCA flat bars treated by CIHA at 460-500℃ for 1-5 s was 45-52 MPa. After full softening annealing, the hardness values of the copper sheath and the aluminum core were HV 65 and HV 24, respectively, and the hardness along the cross section of the CCA flat bar was uniform.展开更多
This paper presents the results of aluminum surface treatment by diffuse coplanar surface barrier discharge. The goals are to study the effectiveness of the plasma treatment and the dependence of its efficiency on ope...This paper presents the results of aluminum surface treatment by diffuse coplanar surface barrier discharge. The goals are to study the effectiveness of the plasma treatment and the dependence of its efficiency on operation parameters, such as sample-to-electrode distance, treatment time or gas atmosphere. Three types of aluminum materials (bricks, sheets and thin films) were tested to ensure the reliability of the treatment. The changes in the surface properties were characterized by the surface free energy, atomic force microscopy, attenuated total reflectance Fourier transform infrared spectroscopy (ATR FTIR) and X-ray photoelectron spec- troscopy (XPS). The influence of aging effect on the treatment was also measured and discussed.展开更多
A new process of welding aluminum water-cooled busbars is proposed, It can not only reduce the weight and cost, but also improve the dynamic and thermal stability. Furthermore~ both finite element method analysis and ...A new process of welding aluminum water-cooled busbars is proposed, It can not only reduce the weight and cost, but also improve the dynamic and thermal stability. Furthermore~ both finite element method analysis and a prototype test testify the advantages of the design which is not limited by load current and provides a new approach for water-cooled reactors.展开更多
A Ni–P alloy gradient coating consisting of multiple electroless Ni–P layers with various phosphorus contents was prepared on the aviation aluminum alloy. Several characterization and electrochemical techniques were...A Ni–P alloy gradient coating consisting of multiple electroless Ni–P layers with various phosphorus contents was prepared on the aviation aluminum alloy. Several characterization and electrochemical techniques were used to characterize the different Ni–P coatings’ morphologies, phase structures, elemental compositions, and corrosion protection. The gradient coating showed good adhesion and high corrosion and wear resistance, enabling the application of aluminum alloy in harsh environments. The results showed that the double zinc immersion was vital in obtaining excellent adhesion (81.2 N). The optimal coating was not peeled and shredded even after bending tests with angles higher than 90°and was not corroded visually after 500 h of neutral salt spray test at 35℃. The high corrosion resistance was attributed to the misaligning of these micro defects in the three different nickel alloy layers and the amorphous structure of the high P content in the outer layer. These findings guide the exploration of functional gradient coatings that meet the high application requirement of aluminum alloy parts in complicated and harsh aviation environments.展开更多
Lightweight aluminum(Al)alloys have been widely used in frontier fields like aerospace and automotive industries,which attracts great interest in additive manufacturing(AM)to process high-value Al parts.As a mainstrea...Lightweight aluminum(Al)alloys have been widely used in frontier fields like aerospace and automotive industries,which attracts great interest in additive manufacturing(AM)to process high-value Al parts.As a mainstream AM technique,laser-directed energy deposition(LDED)shows good scalability to meet the requirements for large-format component manufacturing and repair.However,LDED Al alloys are highly challenging due to their inherent poor printability(e.g.low laser absorption,high oxidation sensitivity and cracking tendency).To further promote the development of LDED high-performance Al alloys,this review offers a deep understanding of the challenges and strategies to improve printability in LDED Al alloys.The porosity,cracking,distortion,inclusions,element evaporation and resultant inferior mechanical properties(worse than laser powder bed fusion)are the key challenges in LDED Al alloys.Processing parameter optimizations,in-situ alloy design,reinforcing particle addition and field assistance are the efficient approaches to improving the printability and performance of LDED Al alloys.The underlying correlations between processes,alloy innovation,characteristic microstructures,and achievable performances in LDED Al alloys are discussed.The benchmark mechanical properties and primary strengthening mechanism of LDED Al alloys are summarized.This review aims to provide a critical and in-depth evaluation of current progress in LDED Al alloys.Future opportunities and perspectives in LDED high-performance Al alloys are also outlined.展开更多
Impact behavior of aluminum alloy 2519A was investigated at strain rates of 600-7 000 s-1 and temperatures of 20-450 ℃ by a split Hopkinson pressure bar. The results show that the flow stress is dominated by temperat...Impact behavior of aluminum alloy 2519A was investigated at strain rates of 600-7 000 s-1 and temperatures of 20-450 ℃ by a split Hopkinson pressure bar. The results show that the flow stress is dominated by temperature, and it increases with strain rate and decreases with deformation temperature. The serrated flow curves show the dynamic recrystallization occurs. The strain rate sensitivity exponents m determined are 0.066, 0.059 4, 0.059 0 and 0.057 3 at 20, 150, 300 and 450 ℃, respectively. Cowper- Symonds constitutive equation expressing the plastic flow behavior was calculated by analysis and regression of the experimental results. The fracture characteristics under the experimental conditions were observed by optical microscopy(OM) and scanning electron microscopy(SEM). It is determined that the tested material fails as a result of adiabatic shearing.展开更多
The effect of barium on the refinement of primary aluminum and on themodification of eutectics in a hypoeutectic aluminum-silicon alloy was investigated. The resultsindicate that barium not only modifies the eutectic ...The effect of barium on the refinement of primary aluminum and on themodification of eutectics in a hypoeutectic aluminum-silicon alloy was investigated. The resultsindicate that barium not only modifies the eutectic silicon but also refines the primary aluminumand there is a relationship between the retained barium and the second spacing of primary aluminum.Experiments of barium-treated commercial Al-Si hypoeutectic alloy show that barium is a bettermodifier than sodium when there is a longer holding time.展开更多
The microstructures after casting and extruding, the mechanical properties and electrical conductivity after RRA treatment of conventional DC casting and low frequency electromagnetic casting (LFEC) 7075 aluminum al...The microstructures after casting and extruding, the mechanical properties and electrical conductivity after RRA treatment of conventional DC casting and low frequency electromagnetic casting (LFEC) 7075 aluminum alloy were investigated. The results showed that finer grains which distributed more homogeneously was obtained in LFEC ingots compared with those conventional DC ingots. The extruded bars of LFEC alloy kept its fine grain features of original as-cast structure. In the RRA treatment, with the extension of second aging time, the tensile strength and hardness of alloy decreased, but the electrical conductivity increased. Meanwhile, as the second aging temperature raised, the phase change rate in precipitation also increased. Under the same conditions, extruded bars of LFEC alloy had better performance than that of conventional DC cast alloy. The optimum RRA heat treatment process was 120 ℃/24 h+180 ℃/30 min+120 ℃/24 h. The LFEC extruded bars acquired tensile strength 676.64 MPa, hardness 198.18, and electrical conductivity 35.7% IACS respectively, which were higher than that in the T6 temper, indicating that a notable RRA response takes place in LFEC extruded bars, whose second-step retrogression time was 30 min, and it was suitable for mass production.展开更多
Differences in the barley varieties have been revealed from tolerance to iron (Fe) and aluminum (Al) ions as well as to their combined effect. Received results allowed to separate barley variety into some (three) grou...Differences in the barley varieties have been revealed from tolerance to iron (Fe) and aluminum (Al) ions as well as to their combined effect. Received results allowed to separate barley variety into some (three) groups: the first—Al-tolerant varieties, the second—Al-sensitive ones and third—moderately resistant variety. The increased concentration of Fe had practically no effect on biometric (seed germination energy) and cytogenetics (frequency of chromosome aberrations and mitotic index) parameters as compared to the reference values. At the same time, iron ion significantly reduces the phytotoxic effect for Al-tolerant varieties in case of these elements jointly presented in solution.展开更多
Ultra-large aluminum shape castings have been increasingly used in automotive vehicles,particularly in electric vehicles for light-weighting and vehicle manufacturing cost reduction.As most of them are structural comp...Ultra-large aluminum shape castings have been increasingly used in automotive vehicles,particularly in electric vehicles for light-weighting and vehicle manufacturing cost reduction.As most of them are structural components subject to both quasi-static,dynamic and cyclic loading,the quality and quantifiable performance of the ultra-large aluminum shape castings is critical to their success in both design and manufacturing.This paper briefly reviews some application examples of ultra-large aluminum castings in automotive industry and outlines their advantages and benefits.Factors affecting quality,microstructure and mechanical properties of ultra-large aluminum castings are evaluated and discussed as aluminum shape casting processing is very complex and often involves many competing mechanisms,multi-physics phenomena,and potentially large uncertainties that significantly influence the casting quality and performance.Metallurgical analysis and mechanical property assessment of an ultra-large aluminum shape casting are presented.Challenges are highlighted and suggestions are made for robust design and manufacturing of ultra-large aluminum castings.展开更多
It is commonly recognized that the cooling rate has a substantial effect on solute partitioning and its resultant microsegregation during solidification.The classical dendrite tip undercooling theory clarifies the mit...It is commonly recognized that the cooling rate has a substantial effect on solute partitioning and its resultant microsegregation during solidification.The classical dendrite tip undercooling theory clarifies the mitigation of microsegregation by increasing the cooling rate.However,most of the studies focused on binary alloys,leaving an open question as to whether the microsegregation of different solutes in a multi-component alloy system exhibits a relieving degree similar to increasing cooling rate.Taking a widely used 6022-type Al alloy(Al-0.76Mg-0.93Si-0.2Fe)as a model alloy,the current study reveals that the microsegregation of Mg gets alleviated to the greatest extent,followed by those of Si and Fe when the cooling rate increases from 5 to 128 K/s.This phenomenon is attributed to the solute-based difference in response to partitioning to cooling rate(denoted as Rk).We propose a theoretical equation to quantify Rk,and the R_(k)values of solute Mg,Si,and Fe successfully explain the rank of solute partitioning in exper-iments.Furthermore,a broad range of R_(k)values of other commonly used alloying elements in Al alloys were calculated and ranked,delivering a handy tool to predict the microsegregation behavior and sol-ubility of different solute elements upon sub-rapid solidification,which is consistent with experimental observation.This framework can also be extended to other multi-component alloy systems.展开更多
Two-mm thick A1050 pure aluminum plates were successfully joined by conventional and rapid cooling friction stir welding(FSW), respectively. The microstructure and mechanical properties of the welded joints were inves...Two-mm thick A1050 pure aluminum plates were successfully joined by conventional and rapid cooling friction stir welding(FSW), respectively. The microstructure and mechanical properties of the welded joints were investigated by electron backscatter diffraction characterization, Vickers hardness measurements, and tensile testing. The results showed that liquid CO_(2) coolant significantly reduced the peak temperature and increased the cooling rate, so the rapidly cooled FSW joint exhibited fine grains with a large number of dislocations. The grain refinement mechanism of the FSW A1050 pure aluminum joint was primarily attributed to the combined effects of continuous dynamic recrystallization, grain subdivision, and geometric dynamic recrystallization. Compared with conventional FSW, the yield strength, ultimate tensile strength, and fracture elongation of rapidly cooled FSW joint were significantly enhanced, and the welding efficiency was increased from 80% to 93%. The enhanced mechanical properties and improved synergy of strength and ductility were obtained due to the increased dislocation density and remarkable grain refinement. The wear of the tool can produce several WC particles retained in the joint, and the contribution of second phase strengthening to the enhanced strength should not be ignored.展开更多
Aluminum hypophosphite microspheres(AHP) were synthesized by hydrothermal method using NaH2PO2·H2O and AlCl3·6H2O as raw materials, and then the AHP microspheres were polymerized by surface polymerization of...Aluminum hypophosphite microspheres(AHP) were synthesized by hydrothermal method using NaH2PO2·H2O and AlCl3·6H2O as raw materials, and then the AHP microspheres were polymerized by surface polymerization of micro-nanospheres with cyclic cross-linked poly(cyclotriphosphazene-co-4,4'-sulfonyldiphenol)(PZS). A new organic-inorganic poly(phosphonitrile)-modified aluminum hypophosphite microspheres(PZS-AHP) were synthesized by encapsulation and applied to flame retardant thermoplastic polyurethane(TPU). The microstructure and chemical composition of the PZS-AHP microsphere were characterized by scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy and X-ray spectroscopy. The thermal stability of PZS-AHP microsphere was explored with thermogravimetric analysis. Thermogravimetric data indicate that the PZS-AHP microspheres have excellent thermal stability. The thermal and flame-retarding properties of the TPU composites were evaluated by thermogravimetric(TG), limited oxygen index tests(LOI), and cone calorimeter test(CCT). The TPU composite achieved vertical burning(UL-94) V-0 grade and LOI value reached 29.2% when 10 wt% PZS-AHP was incorporated. Compared with those of pure TPU, the peak heat release rate(pHRR) and total heat release(THR) of TPU/10%PZS-AHP decreased by 82.2% and 42.5%, respectively. The results of CCT indicated that PZS-AHP microsphere could improve the flame retardancy of TPU composites.展开更多
The electrochemical behavior of Al(Ⅲ)in urea-1-butyl-3-methylimidazolium chloride-aluminum chloride(urea-BMIC-AlCl_(3))ionic liquids,and the effect of potential and temperature on the characterization of cathode prod...The electrochemical behavior of Al(Ⅲ)in urea-1-butyl-3-methylimidazolium chloride-aluminum chloride(urea-BMIC-AlCl_(3))ionic liquids,and the effect of potential and temperature on the characterization of cathode products,current efficiency and energy consumption of aluminum electrorefining have been investigated.Cyclic voltammetry showed that the electrochemical reduction of Al(Ⅲ)was a one-step three-electron-transfer irreversible reaction,and the electrochemical reaction was controlled by diffusion.The diffusion coefficient of Al(Ⅲ)in urea-BMIC-AlCl_(3)ionic liquids at 313 K was 1.94×10^(−7)cm^(2)/s.The 7075 aluminum alloy was used as an anode for electrorefining,and the cathode products were analyzed by XRD,SEM and EDS.The results from XRD analysis indicated that the main phase of the cathode products was aluminum.The results from SEM and EDS characterization revealed that the cathode product obtained by electrorefining−1.2 V(vs.Al)was dense and uniform,and the mass fraction of aluminum decreased from 99.61%to 99.10%as the experimental temperature increased from 313 K to 333 K.In this work,the optimum experimental conditions were−1.2 V(vs.Al)and 313 K.At this time,the cathode current efficiency was 97.80%,while the energy consumption was 3.72 kW·h/kg.展开更多
With the large-scale service of lithium-ion batteries(LIBs),their failures have attracted significant attentions.While the decay of active materials is the primary cause for LIB failures,the degradation of auxiliary m...With the large-scale service of lithium-ion batteries(LIBs),their failures have attracted significant attentions.While the decay of active materials is the primary cause for LIB failures,the degradation of auxiliary materials,such as current collector corrosion,should not be disregarded.Therefore,it is necessary to conduct a comprehensive review in this field.In this review,from the perspectives of electrochemistry and materials,we systematically summarize the corrosion behavior of aluminum cathode current collector and propose corresponding countermeasures.Firstly,the corrosion type is clarified based on the properties of passivation layers in different organic electrolyte components.Furthermore,a thoroughgoing analysis is presented to examine the impact of various factors on aluminum corrosion,including lithium salts,organic solvents,water impurities,and operating conditions.Subsequently,strategies for electrolyte and protection layer employed to suppress corrosion are discussed in detail.Lastly and most importantly,we provide insights and recommendations to prevent corrosion of current collectors,facilitate the development of advanced current collectors and the implementation of next-generation high-voltage stable LIBs.展开更多
Coating modification is an important way to enhance the reactivity of aluminum powder.In this paper,ammonium perchlorate and aluminum powder were assembled into energetic microunits by liquid deposition method.Spheric...Coating modification is an important way to enhance the reactivity of aluminum powder.In this paper,ammonium perchlorate and aluminum powder were assembled into energetic microunits by liquid deposition method.Spherical particles with AP as shell and ultrafine aluminum powder as the core(Al@AP)were gained.The micromorphology results show that the coated particles are about 5μm,and the coating layer is evenly distributed on the outer surface of aluminum powder,indicating a complete coating.The energetic microunits were implanted into the nitrate ester plasticizing adhesive system(NEPE)as solid phase fillers.The effect of filler on the rheological properties,safety,mechanical properties,thermal reaction and energy properties of the system was analyzed by comparing with the raw aluminum filler.The test results show that the rheological properties,mechanical properties and pressure index of NEPE containing system Al@AP meets the requirements of solid propellant charging.Compared with Al based propellant,the mechanical sensitivity and thermal sensitivity are decreased,the safety is better,and the explosion heat of the propellant is increased by 7.8%.The engine test shows that the specific impulse is increased by 1.2 s.Al@AP can improve the energy output and safety of NEPE propellant,and has potential application prospects in high-energy propellants.展开更多
基金the Chinese Ministry of Science and Technology (China-Australian Special Link Research Program)the Grains Research and Development Corporation of Australia (No.UT-8).
文摘A hydroponic experiment was carried out to study the effect of aluminum (Al) and cadmium (Cd) on Al and mineral nutrient contents in plants and Al-induced organic acid exudation in two barley varieties with different Al tolerance. Al- sensitive cv. Shang 70-119 had significantly higher Al content and accumulation in plants than Al-tolerant cv. Gebeina, especially in roots, when subjected to low pH (4.0) and Al treatments (100 μmol L^-1 Al and 100 μmol L^-1 Al +1.0 μmol L^-1 Cd). Cd addition increased Al content in plants exposed to Al stress. Both low pH and Al treatments caused marked reduction in Ca and Mg contents in all plant parts, P and K contents in the shoots and leaves, Fe, Zn and Mo contents in the leaves, Zn and B contents in the shoots, and Mn contents both in the roots and leaves. Moreover, changes in nutrient concentrations were greater in the plants exposed to both Al and Cd than in those exposed only to Al treatment. A dramatic enhancement of malate, citrate, and succinate was found in the plants exposed to 100 μmol L^-1 Al relative to the control, and the Al-tolerant cultivar had a considerable higher exudation of these organic acids than the Al-sensitive one, indicating that Al-induced enhancement of these organic acids is very likely to be associated with Al tolerance.
基金Project(2006CB605203) supported by the National Basic Research Program of China
文摘The self-developed taper barrel rheomoulding (TBR) machine for light alloy semi-solid slurry preparation was introduced.The semi-solid slurry was obtained from the intense shearing turbulence of the alloy melt in the cause of solidification, which was further caused by the relative rotation of the internal and external taper barrel whose surface contained wale and groove.The heat transmission model of TBR process, the flow rules and the shearing model of the alloy melt were deduced.Taking A365 as experimental material, the microstructure evolution rules under different slurry preparation processes were analyzed.The results show that decreasing the pouring temperature of A365 alloy melt properly or increasing the shearing rate helps to obtain ideal semi-solid microstructure with the primary particle size of about 70 μm and the shape factor of above 0.8.
基金Project(20010533009) supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China
文摘Various busbar configurations were built and modeled by the custom code based on the commercial package ANSYS for the 500 kA aluminum electrolysis cell.The configuration parameters,such as side riser entry ratio,number of cathode bars connected to each riser,vertical location of side cathode busbar and short side cathode busbar,distance between rows of cells in potline,the number of neighboring cells,ratio of compensation busbar carried passing under cell and its horizontal location under cell along with large magnetohydrodynamic(MHD) computation based on the custom evaluation function were simulated and discussed.The results show that a cell with riser entry ratio of 11:9:8:9:11 and cathode busbar located at the level of aluminum solution,50% upstream cathode current passing under cell for magnetic field compensation,the distance between rows of 50 m is more stable.
文摘Four barley genotypes (Tiantaiyangdamai, Xiyin2, Mimaill4 and Tai94-Ce6) were exposed to 0, 50, 100, and 150μM of Al-containing solution with pH 4.5, to determine the differences in growth inhibition , Al concentration and accumulation and mineral composition among genotypes. The results showed that Mimaill4 and Tai94-Ce6 had significantly higher Al concentration and accumulation than Tiantaiyangdami and Xiyin2, especially in roots, and the growth traits including root and shoot dry weights, shoot height, root length and tillers per plant were more inhibited in the former two genotypes. Al treatments caused a significant reduction of N, P, K, Ca, Mg and Mn content in both roots and shoots, of Cu in shoots; and a significant increase in Fe and Zn content in both roots and shoots, of Cu in roots. The changed rates of mineral content caused by Al treatments, in terms of the content in 150μM Al divided by the content in the control, differed significantly among four genotypes. Two Al-sensitive genotypes, Mimaill4 and Tai94-Ce6 had much greater changes in mineral content than other two Al-tolerant genotypes Tiantaiyangdamai and Xiyin2 when subjected to Al stress in comparison with the control. It is indicated that the Al-tolerant genotype is characterized by less uptake and accumulation of Al in roots and smaller disorders in mineral metabolism and ion homeostasis.
基金financial support from the National High-Tech Research and Development Program of China (No. 2013AA030706)Beijing Science and Technology Project (No. Z141100004214003)Yunnan Province Sciencial and Technology Cooperation Project (No. 2015IB012)
文摘Copper-clad aluminum (CCA) flat bars produced by the continuous casting-rolling process were subjected to continuous induction heating annealing (CIHA), and the effects of induction heating temperature and holding time on the microstructure, interface, and mechanical properties of the fiat bars were investigated. The results showed that complete recrystallization of the copper sheath occurred under CIHA at 460℃ for 5 s, 480℃ for 3 s, or 500℃ for 1 s and that the average grain size in the copper sheath was approximately 10.0 μm. In the case of specimens subjected to CIHA at 460-500℃ for longer than 1 s, complete recrystallization occurred in the aluminum core. In the case of CIHA at 460-500℃ for 1-5 s, a continuous interracial layer with a thickness of 2.5-5.5 μm formed and the thickness mainly increased with increasing annealing temperature. After CIHA, the interracial layer consisted primarily of a Cu9A14 layer and a CuA12 layer; the average interface shear strength of the CCA flat bars treated by CIHA at 460-500℃ for 1-5 s was 45-52 MPa. After full softening annealing, the hardness values of the copper sheath and the aluminum core were HV 65 and HV 24, respectively, and the hardness along the cross section of the CCA flat bar was uniform.
基金supported by the Czech Science Foundation(Project No.104/08/02290)
文摘This paper presents the results of aluminum surface treatment by diffuse coplanar surface barrier discharge. The goals are to study the effectiveness of the plasma treatment and the dependence of its efficiency on operation parameters, such as sample-to-electrode distance, treatment time or gas atmosphere. Three types of aluminum materials (bricks, sheets and thin films) were tested to ensure the reliability of the treatment. The changes in the surface properties were characterized by the surface free energy, atomic force microscopy, attenuated total reflectance Fourier transform infrared spectroscopy (ATR FTIR) and X-ray photoelectron spec- troscopy (XPS). The influence of aging effect on the treatment was also measured and discussed.
文摘A new process of welding aluminum water-cooled busbars is proposed, It can not only reduce the weight and cost, but also improve the dynamic and thermal stability. Furthermore~ both finite element method analysis and a prototype test testify the advantages of the design which is not limited by load current and provides a new approach for water-cooled reactors.
基金financially supported by the National Natural Science Foundation of China (No.52271073)。
文摘A Ni–P alloy gradient coating consisting of multiple electroless Ni–P layers with various phosphorus contents was prepared on the aviation aluminum alloy. Several characterization and electrochemical techniques were used to characterize the different Ni–P coatings’ morphologies, phase structures, elemental compositions, and corrosion protection. The gradient coating showed good adhesion and high corrosion and wear resistance, enabling the application of aluminum alloy in harsh environments. The results showed that the double zinc immersion was vital in obtaining excellent adhesion (81.2 N). The optimal coating was not peeled and shredded even after bending tests with angles higher than 90°and was not corroded visually after 500 h of neutral salt spray test at 35℃. The high corrosion resistance was attributed to the misaligning of these micro defects in the three different nickel alloy layers and the amorphous structure of the high P content in the outer layer. These findings guide the exploration of functional gradient coatings that meet the high application requirement of aluminum alloy parts in complicated and harsh aviation environments.
基金supported by the 2022 MTC Young Individual Research Grants(Grant No.M22K3c0097)the Singapore Research,Innovation and Enterprise(RIE)2025 PlanSingapore Aerospace Programme Cycle 16(Grant No.M2215a0073)。
文摘Lightweight aluminum(Al)alloys have been widely used in frontier fields like aerospace and automotive industries,which attracts great interest in additive manufacturing(AM)to process high-value Al parts.As a mainstream AM technique,laser-directed energy deposition(LDED)shows good scalability to meet the requirements for large-format component manufacturing and repair.However,LDED Al alloys are highly challenging due to their inherent poor printability(e.g.low laser absorption,high oxidation sensitivity and cracking tendency).To further promote the development of LDED high-performance Al alloys,this review offers a deep understanding of the challenges and strategies to improve printability in LDED Al alloys.The porosity,cracking,distortion,inclusions,element evaporation and resultant inferior mechanical properties(worse than laser powder bed fusion)are the key challenges in LDED Al alloys.Processing parameter optimizations,in-situ alloy design,reinforcing particle addition and field assistance are the efficient approaches to improving the printability and performance of LDED Al alloys.The underlying correlations between processes,alloy innovation,characteristic microstructures,and achievable performances in LDED Al alloys are discussed.The benchmark mechanical properties and primary strengthening mechanism of LDED Al alloys are summarized.This review aims to provide a critical and in-depth evaluation of current progress in LDED Al alloys.Future opportunities and perspectives in LDED high-performance Al alloys are also outlined.
基金Project(2005CB623706)supported by the National Basic Research Program of China
文摘Impact behavior of aluminum alloy 2519A was investigated at strain rates of 600-7 000 s-1 and temperatures of 20-450 ℃ by a split Hopkinson pressure bar. The results show that the flow stress is dominated by temperature, and it increases with strain rate and decreases with deformation temperature. The serrated flow curves show the dynamic recrystallization occurs. The strain rate sensitivity exponents m determined are 0.066, 0.059 4, 0.059 0 and 0.057 3 at 20, 150, 300 and 450 ℃, respectively. Cowper- Symonds constitutive equation expressing the plastic flow behavior was calculated by analysis and regression of the experimental results. The fracture characteristics under the experimental conditions were observed by optical microscopy(OM) and scanning electron microscopy(SEM). It is determined that the tested material fails as a result of adiabatic shearing.
基金This work is financially supported by the National Natural Science Foundation of China (No. 59631080)
文摘The effect of barium on the refinement of primary aluminum and on themodification of eutectics in a hypoeutectic aluminum-silicon alloy was investigated. The resultsindicate that barium not only modifies the eutectic silicon but also refines the primary aluminumand there is a relationship between the retained barium and the second spacing of primary aluminum.Experiments of barium-treated commercial Al-Si hypoeutectic alloy show that barium is a bettermodifier than sodium when there is a longer holding time.
基金Funded by the National Natural Science Foundation of China(Nos. 51004036 and N110408005)
文摘The microstructures after casting and extruding, the mechanical properties and electrical conductivity after RRA treatment of conventional DC casting and low frequency electromagnetic casting (LFEC) 7075 aluminum alloy were investigated. The results showed that finer grains which distributed more homogeneously was obtained in LFEC ingots compared with those conventional DC ingots. The extruded bars of LFEC alloy kept its fine grain features of original as-cast structure. In the RRA treatment, with the extension of second aging time, the tensile strength and hardness of alloy decreased, but the electrical conductivity increased. Meanwhile, as the second aging temperature raised, the phase change rate in precipitation also increased. Under the same conditions, extruded bars of LFEC alloy had better performance than that of conventional DC cast alloy. The optimum RRA heat treatment process was 120 ℃/24 h+180 ℃/30 min+120 ℃/24 h. The LFEC extruded bars acquired tensile strength 676.64 MPa, hardness 198.18, and electrical conductivity 35.7% IACS respectively, which were higher than that in the T6 temper, indicating that a notable RRA response takes place in LFEC extruded bars, whose second-step retrogression time was 30 min, and it was suitable for mass production.
文摘Differences in the barley varieties have been revealed from tolerance to iron (Fe) and aluminum (Al) ions as well as to their combined effect. Received results allowed to separate barley variety into some (three) groups: the first—Al-tolerant varieties, the second—Al-sensitive ones and third—moderately resistant variety. The increased concentration of Fe had practically no effect on biometric (seed germination energy) and cytogenetics (frequency of chromosome aberrations and mitotic index) parameters as compared to the reference values. At the same time, iron ion significantly reduces the phytotoxic effect for Al-tolerant varieties in case of these elements jointly presented in solution.
文摘Ultra-large aluminum shape castings have been increasingly used in automotive vehicles,particularly in electric vehicles for light-weighting and vehicle manufacturing cost reduction.As most of them are structural components subject to both quasi-static,dynamic and cyclic loading,the quality and quantifiable performance of the ultra-large aluminum shape castings is critical to their success in both design and manufacturing.This paper briefly reviews some application examples of ultra-large aluminum castings in automotive industry and outlines their advantages and benefits.Factors affecting quality,microstructure and mechanical properties of ultra-large aluminum castings are evaluated and discussed as aluminum shape casting processing is very complex and often involves many competing mechanisms,multi-physics phenomena,and potentially large uncertainties that significantly influence the casting quality and performance.Metallurgical analysis and mechanical property assessment of an ultra-large aluminum shape casting are presented.Challenges are highlighted and suggestions are made for robust design and manufacturing of ultra-large aluminum castings.
基金Financial support from the National Natural Science Foundation of China(Nos.52222409,52074132,U19A2084)the National Key Research and Development Program(No.2022YFE0122000)are greatly acknowledged.
文摘It is commonly recognized that the cooling rate has a substantial effect on solute partitioning and its resultant microsegregation during solidification.The classical dendrite tip undercooling theory clarifies the mitigation of microsegregation by increasing the cooling rate.However,most of the studies focused on binary alloys,leaving an open question as to whether the microsegregation of different solutes in a multi-component alloy system exhibits a relieving degree similar to increasing cooling rate.Taking a widely used 6022-type Al alloy(Al-0.76Mg-0.93Si-0.2Fe)as a model alloy,the current study reveals that the microsegregation of Mg gets alleviated to the greatest extent,followed by those of Si and Fe when the cooling rate increases from 5 to 128 K/s.This phenomenon is attributed to the solute-based difference in response to partitioning to cooling rate(denoted as Rk).We propose a theoretical equation to quantify Rk,and the R_(k)values of solute Mg,Si,and Fe successfully explain the rank of solute partitioning in exper-iments.Furthermore,a broad range of R_(k)values of other commonly used alloying elements in Al alloys were calculated and ranked,delivering a handy tool to predict the microsegregation behavior and sol-ubility of different solute elements upon sub-rapid solidification,which is consistent with experimental observation.This framework can also be extended to other multi-component alloy systems.
基金Funded by the Natural Science Foundation of Jiangsu Province(No.BK20211067)“Qing Lan” Project of Jiangsu Province。
文摘Two-mm thick A1050 pure aluminum plates were successfully joined by conventional and rapid cooling friction stir welding(FSW), respectively. The microstructure and mechanical properties of the welded joints were investigated by electron backscatter diffraction characterization, Vickers hardness measurements, and tensile testing. The results showed that liquid CO_(2) coolant significantly reduced the peak temperature and increased the cooling rate, so the rapidly cooled FSW joint exhibited fine grains with a large number of dislocations. The grain refinement mechanism of the FSW A1050 pure aluminum joint was primarily attributed to the combined effects of continuous dynamic recrystallization, grain subdivision, and geometric dynamic recrystallization. Compared with conventional FSW, the yield strength, ultimate tensile strength, and fracture elongation of rapidly cooled FSW joint were significantly enhanced, and the welding efficiency was increased from 80% to 93%. The enhanced mechanical properties and improved synergy of strength and ductility were obtained due to the increased dislocation density and remarkable grain refinement. The wear of the tool can produce several WC particles retained in the joint, and the contribution of second phase strengthening to the enhanced strength should not be ignored.
基金Supported by the Opening Project of Hubei Three Gorges Laboratory (No.SK213008)the Innovation Fund of Key Laboratory of Green Chemical Process of Ministry of Education (No.GCXP202109)。
文摘Aluminum hypophosphite microspheres(AHP) were synthesized by hydrothermal method using NaH2PO2·H2O and AlCl3·6H2O as raw materials, and then the AHP microspheres were polymerized by surface polymerization of micro-nanospheres with cyclic cross-linked poly(cyclotriphosphazene-co-4,4'-sulfonyldiphenol)(PZS). A new organic-inorganic poly(phosphonitrile)-modified aluminum hypophosphite microspheres(PZS-AHP) were synthesized by encapsulation and applied to flame retardant thermoplastic polyurethane(TPU). The microstructure and chemical composition of the PZS-AHP microsphere were characterized by scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy and X-ray spectroscopy. The thermal stability of PZS-AHP microsphere was explored with thermogravimetric analysis. Thermogravimetric data indicate that the PZS-AHP microspheres have excellent thermal stability. The thermal and flame-retarding properties of the TPU composites were evaluated by thermogravimetric(TG), limited oxygen index tests(LOI), and cone calorimeter test(CCT). The TPU composite achieved vertical burning(UL-94) V-0 grade and LOI value reached 29.2% when 10 wt% PZS-AHP was incorporated. Compared with those of pure TPU, the peak heat release rate(pHRR) and total heat release(THR) of TPU/10%PZS-AHP decreased by 82.2% and 42.5%, respectively. The results of CCT indicated that PZS-AHP microsphere could improve the flame retardancy of TPU composites.
基金Project(52004062)supported by the National Natural Science Foundation of ChinaProject(2020-MS-084)supported by the Natural Science Foundation of Liaoning Province,ChinaProject(N2125014)supported by the Fundamental Research Funds for the Central Universities,China。
文摘The electrochemical behavior of Al(Ⅲ)in urea-1-butyl-3-methylimidazolium chloride-aluminum chloride(urea-BMIC-AlCl_(3))ionic liquids,and the effect of potential and temperature on the characterization of cathode products,current efficiency and energy consumption of aluminum electrorefining have been investigated.Cyclic voltammetry showed that the electrochemical reduction of Al(Ⅲ)was a one-step three-electron-transfer irreversible reaction,and the electrochemical reaction was controlled by diffusion.The diffusion coefficient of Al(Ⅲ)in urea-BMIC-AlCl_(3)ionic liquids at 313 K was 1.94×10^(−7)cm^(2)/s.The 7075 aluminum alloy was used as an anode for electrorefining,and the cathode products were analyzed by XRD,SEM and EDS.The results from XRD analysis indicated that the main phase of the cathode products was aluminum.The results from SEM and EDS characterization revealed that the cathode product obtained by electrorefining−1.2 V(vs.Al)was dense and uniform,and the mass fraction of aluminum decreased from 99.61%to 99.10%as the experimental temperature increased from 313 K to 333 K.In this work,the optimum experimental conditions were−1.2 V(vs.Al)and 313 K.At this time,the cathode current efficiency was 97.80%,while the energy consumption was 3.72 kW·h/kg.
文摘With the large-scale service of lithium-ion batteries(LIBs),their failures have attracted significant attentions.While the decay of active materials is the primary cause for LIB failures,the degradation of auxiliary materials,such as current collector corrosion,should not be disregarded.Therefore,it is necessary to conduct a comprehensive review in this field.In this review,from the perspectives of electrochemistry and materials,we systematically summarize the corrosion behavior of aluminum cathode current collector and propose corresponding countermeasures.Firstly,the corrosion type is clarified based on the properties of passivation layers in different organic electrolyte components.Furthermore,a thoroughgoing analysis is presented to examine the impact of various factors on aluminum corrosion,including lithium salts,organic solvents,water impurities,and operating conditions.Subsequently,strategies for electrolyte and protection layer employed to suppress corrosion are discussed in detail.Lastly and most importantly,we provide insights and recommendations to prevent corrosion of current collectors,facilitate the development of advanced current collectors and the implementation of next-generation high-voltage stable LIBs.
基金supported by Natural Science Foundation (Grant No.21975024)Natural Science Foundation of Inner Mongolia Autonomous Region (Grant No.2021BS05014)。
文摘Coating modification is an important way to enhance the reactivity of aluminum powder.In this paper,ammonium perchlorate and aluminum powder were assembled into energetic microunits by liquid deposition method.Spherical particles with AP as shell and ultrafine aluminum powder as the core(Al@AP)were gained.The micromorphology results show that the coated particles are about 5μm,and the coating layer is evenly distributed on the outer surface of aluminum powder,indicating a complete coating.The energetic microunits were implanted into the nitrate ester plasticizing adhesive system(NEPE)as solid phase fillers.The effect of filler on the rheological properties,safety,mechanical properties,thermal reaction and energy properties of the system was analyzed by comparing with the raw aluminum filler.The test results show that the rheological properties,mechanical properties and pressure index of NEPE containing system Al@AP meets the requirements of solid propellant charging.Compared with Al based propellant,the mechanical sensitivity and thermal sensitivity are decreased,the safety is better,and the explosion heat of the propellant is increased by 7.8%.The engine test shows that the specific impulse is increased by 1.2 s.Al@AP can improve the energy output and safety of NEPE propellant,and has potential application prospects in high-energy propellants.