The use of Crocin, derived from the flowers of Crocus sativus, is investigated as corrosion inhibitor for the AA1050, AA5083, AA5754 and AA6082 aluminum alloys in chloride ions environment. Aluminum and aluminum alloy...The use of Crocin, derived from the flowers of Crocus sativus, is investigated as corrosion inhibitor for the AA1050, AA5083, AA5754 and AA6082 aluminum alloys in chloride ions environment. Aluminum and aluminum alloys are subjected to corrosion in the aggressive environment of chlorides, so several green corrosion inhibitors, mostly of plant origin, with minimum impact on health and the environment have been examined. In this study, the inhibition efficiency of 1.25 mM Crocin in a 0.01 M NaCl corrosive solution was assessed via electrochemical corrosion techniques and gravimetric mass loss measurements of the aluminum alloys. The surface of the specimens was examined using Scanning Electron Microscopy, Energy Dispersive Spectroscopy, Stereomicroscopy and Glossiness measurements. Experimental results reveal the protective anticorrosive action of Crocin for all aluminum alloys in the sodium chloride medium.展开更多
Aluminum coatings on Mg alloy AZ31 were fabricated using the thermal spraying technique, and then sealed with silane.The surface morphology and chemical groups were discerned using scanning electron microscopy and exa...Aluminum coatings on Mg alloy AZ31 were fabricated using the thermal spraying technique, and then sealed with silane.The surface morphology and chemical groups were discerned using scanning electron microscopy and examined using Fourier transformation infrared spectroscopy, respectively.The salt fog tests and the potentiodynamic electrochemical technique were applied to evaluate the influence of silane on corrosion of the AZ31 alloy with aluminum coatings.The results showed that the corrosion resistance of the aluminum-coated AZ31 alloy was superior to that of the substrate.The aluminum coating sealed with various silane layers led to a further increase in the corrosion resistance of the alloy.Double silane layers were more corrosion-resistant than the single one.Also, it was no longer significant for more than two silane layers to improve the corrosion resistance.It implied that the optimum choice for silane treatment on the aluminum coatings was two layers.展开更多
The corrosion behavior of friction-stir-welded 2A14-T6 aluminum alloy was investigated by immersion testing in immersion exfoliation corrosion(EXCO) solution. Electrochemical measurements(open circuit potential, po...The corrosion behavior of friction-stir-welded 2A14-T6 aluminum alloy was investigated by immersion testing in immersion exfoliation corrosion(EXCO) solution. Electrochemical measurements(open circuit potential, potentiodynamic polarization curves, and electrochemical impedance spectroscopy), scanning electron microscopy, and energy dispersive spectroscopy were employed for analyzing the corrosion mechanism. The results show that, compared to the base material, the corrosion resistance of the friction-stir welds is greatly improved, and the weld nugget has the highest corrosion resistance. The pitting susceptibility originates from the edge of Al-Cu-Fe-Mn-Si phase particles as the cathode compared to the matrix due to their high self-corrosion potential. No corrosion activity is observed around the θ phase(Al2Cu) after 2 h of immersion in EXCO solution.展开更多
Potentiodynamic polarization tests and slow strain rate test(SSRT) in combination with fracture morphology observations were conducted to investigate the stress corrosion cracking(SCC) behavior of 7003 aluminum al...Potentiodynamic polarization tests and slow strain rate test(SSRT) in combination with fracture morphology observations were conducted to investigate the stress corrosion cracking(SCC) behavior of 7003 aluminum alloy(AA7003) in acid and alkaline chloride solutions under various applied potentials(Ea). The results show that AA7003 is to a certain extent susceptible to SCC via anodic dissolution(AD) at open-circuit potential(OCP) and is highly susceptible to hydrogen embrittlement(HE) at high negative Ea in the solutions with p H levels of 4 and 11. The susceptibility increases with negative shift in the potential when Ea is less than-1000 m V vs. SCE. However, the susceptibility distinctly decreases because of the inhibition of AD when Ea is equal to-1000 m V vs. SCE. In addition, the SCC susceptibility of AA7003 in the acid chloride solution is higher than that in the alkaline solution at each potential. Moreover, the effect of hydrogen on SCC increases with increasing hydrogen ion concentration.展开更多
Galvanic corrosion on samples of AZ91D magnesium alloy coupled with 2A12 aluminum alloy during neutral salt spray test was investigated.The variations of the surface potential were measured using scanning kelvin probe...Galvanic corrosion on samples of AZ91D magnesium alloy coupled with 2A12 aluminum alloy during neutral salt spray test was investigated.The variations of the surface potential were measured using scanning kelvin probe(SKP).The results showed that galvanic effect on the corrosion of AZ91D magnesium alloy is closely related to the potential difference between the anodic and cathodic materials.In the initial period,corrosion only occurred in a narrow area at the coupling interface because of the limited distance galvanic current.Then,the corrosion rate of 2A12 aluminum alloy was accelerated due to its poor stability in strong alkali environment,which was attributed to the strong alkalization caused by the corrosion of AZ91D magnesium alloy.With the increase of the potential of 2A12 aluminum alloy as a result of the continuous covering of corrosion products,the potential difference between the two materials was enlarged,which enhanced the galvanic corrosion.展开更多
The dissolution rate of naked Al sbeet in the acidic solutions containing polybutadienoic acid(PBA) with pH vaIue of 0. 3~3. 0 at 20~60℃ has been determined by eIectrometry and gravimetry methods. The form of elect...The dissolution rate of naked Al sbeet in the acidic solutions containing polybutadienoic acid(PBA) with pH vaIue of 0. 3~3. 0 at 20~60℃ has been determined by eIectrometry and gravimetry methods. The form of electroactive Al (m ) ions occurred on the anode and the behavior of electrocoagulation ofPBA have been approached. The results lndlcate that the superlor condltlon of electrocoagulation of watersoIuble nonsaturable low polymer PBA is the adoption of the eIectroactive Alions occurred in electrolytecontaining 1. 0 g. L-l PBA + 0. 2 mol' L-1 C'H,O, cltrlc acld with pH value of 3. 0 at 30℃. The mechanismof corrosion-inhibited 0r electrocoagulation resulted from the electroactive Al (lI) ions coordinate -COOHgroup of PBA and free l0ns of citric groups iuto the aluminum soaps with bicyclic structure are briefly discussed in tkis paper.展开更多
Atmospheric corrosion behavior of pure Al 1050 A, 5A02 and 6A02 aluminum alloys exposed to a tropical marine environment for 4 years was investigated. Synergetic effect of Cl-deposition rate and time of wetness result...Atmospheric corrosion behavior of pure Al 1050 A, 5A02 and 6A02 aluminum alloys exposed to a tropical marine environment for 4 years was investigated. Synergetic effect of Cl-deposition rate and time of wetness resulted in an abnormal increase in weight loss and a significant fluctuation in corrosion rate. Pitting corrosion occurred on the three metals. Pits on 5A02 alloy were easy to initiate and inclined to propagate laterally to form higher corrosion area and shallower corrosion pits, while pits on 6A02 alloy presented the opposite appearances. This was further confirmed by the cyclic polarization experiments.展开更多
A double-layer aluminum consisting of an aluminum core and a shellof SiO2 and polyacrylic acid was synthesized.This modified aluminum was used to improve the corrosion resistance and dispersive property of aluminum in...A double-layer aluminum consisting of an aluminum core and a shellof SiO2 and polyacrylic acid was synthesized.This modified aluminum was used to improve the corrosion resistance and dispersive property of aluminum in waterborne media.TEM,FTIR,XPS,and EDX determination showed that PAA and SiO2 were coated on the surface of aluminum.Evolved hydrogen detection showed that the corrosion resistance of composite particle had been markedly improved.Maximum corrosion inhibition efficiency of SiO2 coated aluminum(SiO2@Al)was 95.1% while that of double-layer coated aluminum(PAA/SiO2@Al)was 98.8%.Meanwhile,polyacrylic acid layer improved the agglomeration of aluminum significantly.According to the dispersibility test,the particle size of 50% volume fraction [d(0.5)] of aluminum,SiO2@Aland PAA/SiO2@Alwere 42,53,and 34 μm,respectively.展开更多
The effect of thermal shock, in an accelerated-corrosion environment spectrum, on the fatigue and corrosion behavior of 7B04-T6 aluminum alloy, was determined. The environment spectrum consists of two modules, namely...The effect of thermal shock, in an accelerated-corrosion environment spectrum, on the fatigue and corrosion behavior of 7B04-T6 aluminum alloy, was determined. The environment spectrum consists of two modules, namely: salt-spray corrosion and thermal shock. The effect of thermal shock on the mechanical properties was determined via tensile tests; SEM, DCS, and XRD were used to determine the effect of thermal shock on the corrosion products. In addition, the corrosion resistance of the products was ascertained through electrochemical testing. The results show that the mechanical properties and fatigue life of the aluminum alloy will decline with prolonged thermal shock time. The thermal shock process may result in denser surface corrosion products than those formed on the no thermal shock specimens, and transformation of some Al(OH)_3 into Al OOH. Al OOH may have resulted in improved corrosion resistance and hence a lower decrease in the fatigue life after corrosion, compared with that of the no thermal shock specimen. Repeated corrosion/thermal shock may have delayed further decease in the fatigue life. Therefore, selection of an appropriate equivalent thermal shock temperature and time was essential for designing the environmental spectrum.展开更多
The NiFe2O4 inert anode is synthesized by high-temperature solid-state reaction method using NiO and Fe2O3 as main raw materials and adding MnO2 powder as additive. Archimedes method using water immersion technique is...The NiFe2O4 inert anode is synthesized by high-temperature solid-state reaction method using NiO and Fe2O3 as main raw materials and adding MnO2 powder as additive. Archimedes method using water immersion technique is used to measure the sintering performances of sampies. The static thermal corrosion rates of samples are measured by weight loss. SEM is employed for the observation of material microstructure, and phase structure of the sample surface after corrosion is determined by XRD. The experimental results indicate that a suitable MnO2 additive content is 2%, while the sintering performance is the best, and the static thermal corrosion rate is the lowest. Because of MnO2 dopant enriching at crystal boundary, the corrosion reaction of molten salt to crystal grain creates Mn2AlO4 phase, which is denser than NiFe2O4 phase, and prevents the cryolite molten salt to penetrate into the inert anode, thus reducing the corrosion.展开更多
The S–N curves of 7A85-T7452 aluminum alloy in laboratory air and in neutral 3.5 wt% NaCl solution were obtained by axial fatigue tests. Results show that the detrimental effect of the aggressive solution was not not...The S–N curves of 7A85-T7452 aluminum alloy in laboratory air and in neutral 3.5 wt% NaCl solution were obtained by axial fatigue tests. Results show that the detrimental effect of the aggressive solution was not noticeable at high-cyclic-stress regions, but the effect was significant at low-stress region. Corrosion fatigue mechanism was discussed by corrosion morphology analysis, fracture surface analysis and microstructure characterization. It was found that the corrosion fatigue crack commonly initialed at the localized intergranular corrosion site. TEM analysis showed that the microstructures of 7A85-T7452 aluminum alloy were characterized by fine and homogeneously distributed matrix precipitates, as well as continually distributed anodic grain boundary precipitates. The types of microstructures are the reason for its intergranular corrosion susceptibility. The corrosion fatigue process of 7A85 aluminum alloy in 3.5 wt% NaCl solution can be divided into four stages: the crack initiation stage, the stable growth stage with low and high growth rate and the final rupture stage. The sodium chloride solution mainly affected the crack initiation stage and the stable growth stage with low growth rate, and when the crack growth rate reached a threshold, the effect was reduced.展开更多
The effects of shot peening(SP) and plasma electrolytic oxidation(PEO) on the intergranular corrosion behavior of the novel high strength aluminum alloy 7A85(AA 7A85) were investigated by electrochemical polariz...The effects of shot peening(SP) and plasma electrolytic oxidation(PEO) on the intergranular corrosion behavior of the novel high strength aluminum alloy 7A85(AA 7A85) were investigated by electrochemical polarization and electrochemical impedance tests.The intergranular corrosion mechanism of SP,PEO and PEO combined with sealingtreated AA 7A85 was studied by the metallographic analysis,residual stress testing,X-ray diffractometer analysis and scanning electron microscopy.The results show that AA 7A85-T7452 is very sensitive to intergranular corrosion.SP would significantly improve its intergranular corrosion resistance.This is attributed to the combination action of residual compressive stress and grain refinement.PEO would reduce the largest corrosion depth by 41.6%.Moreover,PEO without sealing did not eliminate the intergranular corrosion due to the existence of the micropores and microcracks in the oxide coating.However,PEO combined with the SiO2sol–gel sealing treatment could effectively protect the AA 7A85-T7452 from intergranular corrosion because of the good corrosion resistance and barrier function of the sealed coating.展开更多
The corrosion behavior of an Fe-20Mn-11Al-1.8C-5Cr alloy prepared by spark plasma sintering was investigated via immersion tests in molten aluminum at 750℃ for 1 and 4 h, respectively, and a hot work steel (AlSI H13...The corrosion behavior of an Fe-20Mn-11Al-1.8C-5Cr alloy prepared by spark plasma sintering was investigated via immersion tests in molten aluminum at 750℃ for 1 and 4 h, respectively, and a hot work steel (AlSI H13) was included as a reference. The experimental results show that the corrosion rate of Fe-20Mn-11Al-1.8C-5Cr alloy is - 24% of that of H13 steel, suggesting that Fe-20Mn-11Al-1.8C-5Cr alloy in molten aluminum possesses better corrosion resistance than H13 steel. Detailed analysis show that k-carbide ((Fe, Mn)3AlCx) and Cr7C3 carbide precipitated in the matrix play a key role in enhancing the corrosion resistance of Fe-20Mn-11Al-1.8C-5Cr alloy in molten aluminum. Both of them show better corrosion resistance than 7-Fe matrix and H13 steel, and can also take on the role of roots in grasping the corrosion product and restrain them from spalling into the molten aluminum.展开更多
文摘The use of Crocin, derived from the flowers of Crocus sativus, is investigated as corrosion inhibitor for the AA1050, AA5083, AA5754 and AA6082 aluminum alloys in chloride ions environment. Aluminum and aluminum alloys are subjected to corrosion in the aggressive environment of chlorides, so several green corrosion inhibitors, mostly of plant origin, with minimum impact on health and the environment have been examined. In this study, the inhibition efficiency of 1.25 mM Crocin in a 0.01 M NaCl corrosive solution was assessed via electrochemical corrosion techniques and gravimetric mass loss measurements of the aluminum alloys. The surface of the specimens was examined using Scanning Electron Microscopy, Energy Dispersive Spectroscopy, Stereomicroscopy and Glossiness measurements. Experimental results reveal the protective anticorrosive action of Crocin for all aluminum alloys in the sodium chloride medium.
基金supported by the Key Technologies Research & Development Program of Chongqing Science and Technology Commission (CSTC) (Nos. 2007AC4073 and 2009AB4008)the Natural Science Foundation of CSTC, China (No. 2008BB0063)
文摘Aluminum coatings on Mg alloy AZ31 were fabricated using the thermal spraying technique, and then sealed with silane.The surface morphology and chemical groups were discerned using scanning electron microscopy and examined using Fourier transformation infrared spectroscopy, respectively.The salt fog tests and the potentiodynamic electrochemical technique were applied to evaluate the influence of silane on corrosion of the AZ31 alloy with aluminum coatings.The results showed that the corrosion resistance of the aluminum-coated AZ31 alloy was superior to that of the substrate.The aluminum coating sealed with various silane layers led to a further increase in the corrosion resistance of the alloy.Double silane layers were more corrosion-resistant than the single one.Also, it was no longer significant for more than two silane layers to improve the corrosion resistance.It implied that the optimum choice for silane treatment on the aluminum coatings was two layers.
基金financially supported by the National Natural Science Foundation of China (No. 51105030)
文摘The corrosion behavior of friction-stir-welded 2A14-T6 aluminum alloy was investigated by immersion testing in immersion exfoliation corrosion(EXCO) solution. Electrochemical measurements(open circuit potential, potentiodynamic polarization curves, and electrochemical impedance spectroscopy), scanning electron microscopy, and energy dispersive spectroscopy were employed for analyzing the corrosion mechanism. The results show that, compared to the base material, the corrosion resistance of the friction-stir welds is greatly improved, and the weld nugget has the highest corrosion resistance. The pitting susceptibility originates from the edge of Al-Cu-Fe-Mn-Si phase particles as the cathode compared to the matrix due to their high self-corrosion potential. No corrosion activity is observed around the θ phase(Al2Cu) after 2 h of immersion in EXCO solution.
基金financially supported by the National Natural Science Foundation of China(No.51371039)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD),Jiangsu Province,China
文摘Potentiodynamic polarization tests and slow strain rate test(SSRT) in combination with fracture morphology observations were conducted to investigate the stress corrosion cracking(SCC) behavior of 7003 aluminum alloy(AA7003) in acid and alkaline chloride solutions under various applied potentials(Ea). The results show that AA7003 is to a certain extent susceptible to SCC via anodic dissolution(AD) at open-circuit potential(OCP) and is highly susceptible to hydrogen embrittlement(HE) at high negative Ea in the solutions with p H levels of 4 and 11. The susceptibility increases with negative shift in the potential when Ea is less than-1000 m V vs. SCE. However, the susceptibility distinctly decreases because of the inhibition of AD when Ea is equal to-1000 m V vs. SCE. In addition, the SCC susceptibility of AA7003 in the acid chloride solution is higher than that in the alkaline solution at each potential. Moreover, the effect of hydrogen on SCC increases with increasing hydrogen ion concentration.
基金Funded by the National Natural Science Foundation of China(No.51271032)
文摘Galvanic corrosion on samples of AZ91D magnesium alloy coupled with 2A12 aluminum alloy during neutral salt spray test was investigated.The variations of the surface potential were measured using scanning kelvin probe(SKP).The results showed that galvanic effect on the corrosion of AZ91D magnesium alloy is closely related to the potential difference between the anodic and cathodic materials.In the initial period,corrosion only occurred in a narrow area at the coupling interface because of the limited distance galvanic current.Then,the corrosion rate of 2A12 aluminum alloy was accelerated due to its poor stability in strong alkali environment,which was attributed to the strong alkalization caused by the corrosion of AZ91D magnesium alloy.With the increase of the potential of 2A12 aluminum alloy as a result of the continuous covering of corrosion products,the potential difference between the two materials was enlarged,which enhanced the galvanic corrosion.
文摘The dissolution rate of naked Al sbeet in the acidic solutions containing polybutadienoic acid(PBA) with pH vaIue of 0. 3~3. 0 at 20~60℃ has been determined by eIectrometry and gravimetry methods. The form of electroactive Al (m ) ions occurred on the anode and the behavior of electrocoagulation ofPBA have been approached. The results lndlcate that the superlor condltlon of electrocoagulation of watersoIuble nonsaturable low polymer PBA is the adoption of the eIectroactive Alions occurred in electrolytecontaining 1. 0 g. L-l PBA + 0. 2 mol' L-1 C'H,O, cltrlc acld with pH value of 3. 0 at 30℃. The mechanismof corrosion-inhibited 0r electrocoagulation resulted from the electroactive Al (lI) ions coordinate -COOHgroup of PBA and free l0ns of citric groups iuto the aluminum soaps with bicyclic structure are briefly discussed in tkis paper.
基金Funded by the Natural Science Foundation of Shandong Province(Nos.ZR2016EMB12,ZR2013DL007)China Postdoctoral Science Foundation(No.2015M582139)+1 种基金National Natural Science Foundation of China(No.41406106)the Major State Basic Research Development Program of China(973 Program),(No.2014CB643300)
文摘Atmospheric corrosion behavior of pure Al 1050 A, 5A02 and 6A02 aluminum alloys exposed to a tropical marine environment for 4 years was investigated. Synergetic effect of Cl-deposition rate and time of wetness resulted in an abnormal increase in weight loss and a significant fluctuation in corrosion rate. Pitting corrosion occurred on the three metals. Pits on 5A02 alloy were easy to initiate and inclined to propagate laterally to form higher corrosion area and shallower corrosion pits, while pits on 6A02 alloy presented the opposite appearances. This was further confirmed by the cyclic polarization experiments.
基金Funded by the National Natural Science Foundation of China(31170558)the Fundamental Research Funds for the Central Universities(410500006)
文摘A double-layer aluminum consisting of an aluminum core and a shellof SiO2 and polyacrylic acid was synthesized.This modified aluminum was used to improve the corrosion resistance and dispersive property of aluminum in waterborne media.TEM,FTIR,XPS,and EDX determination showed that PAA and SiO2 were coated on the surface of aluminum.Evolved hydrogen detection showed that the corrosion resistance of composite particle had been markedly improved.Maximum corrosion inhibition efficiency of SiO2 coated aluminum(SiO2@Al)was 95.1% while that of double-layer coated aluminum(PAA/SiO2@Al)was 98.8%.Meanwhile,polyacrylic acid layer improved the agglomeration of aluminum significantly.According to the dispersibility test,the particle size of 50% volume fraction [d(0.5)] of aluminum,SiO2@Aland PAA/SiO2@Alwere 42,53,and 34 μm,respectively.
文摘The effect of thermal shock, in an accelerated-corrosion environment spectrum, on the fatigue and corrosion behavior of 7B04-T6 aluminum alloy, was determined. The environment spectrum consists of two modules, namely: salt-spray corrosion and thermal shock. The effect of thermal shock on the mechanical properties was determined via tensile tests; SEM, DCS, and XRD were used to determine the effect of thermal shock on the corrosion products. In addition, the corrosion resistance of the products was ascertained through electrochemical testing. The results show that the mechanical properties and fatigue life of the aluminum alloy will decline with prolonged thermal shock time. The thermal shock process may result in denser surface corrosion products than those formed on the no thermal shock specimens, and transformation of some Al(OH)_3 into Al OOH. Al OOH may have resulted in improved corrosion resistance and hence a lower decrease in the fatigue life after corrosion, compared with that of the no thermal shock specimen. Repeated corrosion/thermal shock may have delayed further decease in the fatigue life. Therefore, selection of an appropriate equivalent thermal shock temperature and time was essential for designing the environmental spectrum.
基金This work was suppored by the National High Technical Reasearch and Development Programme of China(No.2001AA335010).
文摘The NiFe2O4 inert anode is synthesized by high-temperature solid-state reaction method using NiO and Fe2O3 as main raw materials and adding MnO2 powder as additive. Archimedes method using water immersion technique is used to measure the sintering performances of sampies. The static thermal corrosion rates of samples are measured by weight loss. SEM is employed for the observation of material microstructure, and phase structure of the sample surface after corrosion is determined by XRD. The experimental results indicate that a suitable MnO2 additive content is 2%, while the sintering performance is the best, and the static thermal corrosion rate is the lowest. Because of MnO2 dopant enriching at crystal boundary, the corrosion reaction of molten salt to crystal grain creates Mn2AlO4 phase, which is denser than NiFe2O4 phase, and prevents the cryolite molten salt to penetrate into the inert anode, thus reducing the corrosion.
基金the National Natural Science Foundation of China (No. 51171154)the National Defense Key Disciplines Laboratory of Light Alloy Processing Science and Technology, Nanchang Hangkong University (No. gf 201401001)
文摘The S–N curves of 7A85-T7452 aluminum alloy in laboratory air and in neutral 3.5 wt% NaCl solution were obtained by axial fatigue tests. Results show that the detrimental effect of the aggressive solution was not noticeable at high-cyclic-stress regions, but the effect was significant at low-stress region. Corrosion fatigue mechanism was discussed by corrosion morphology analysis, fracture surface analysis and microstructure characterization. It was found that the corrosion fatigue crack commonly initialed at the localized intergranular corrosion site. TEM analysis showed that the microstructures of 7A85-T7452 aluminum alloy were characterized by fine and homogeneously distributed matrix precipitates, as well as continually distributed anodic grain boundary precipitates. The types of microstructures are the reason for its intergranular corrosion susceptibility. The corrosion fatigue process of 7A85 aluminum alloy in 3.5 wt% NaCl solution can be divided into four stages: the crack initiation stage, the stable growth stage with low and high growth rate and the final rupture stage. The sodium chloride solution mainly affected the crack initiation stage and the stable growth stage with low growth rate, and when the crack growth rate reached a threshold, the effect was reduced.
基金financially supported by the National Natural Science Foundation of China (No.51171154)
文摘The effects of shot peening(SP) and plasma electrolytic oxidation(PEO) on the intergranular corrosion behavior of the novel high strength aluminum alloy 7A85(AA 7A85) were investigated by electrochemical polarization and electrochemical impedance tests.The intergranular corrosion mechanism of SP,PEO and PEO combined with sealingtreated AA 7A85 was studied by the metallographic analysis,residual stress testing,X-ray diffractometer analysis and scanning electron microscopy.The results show that AA 7A85-T7452 is very sensitive to intergranular corrosion.SP would significantly improve its intergranular corrosion resistance.This is attributed to the combination action of residual compressive stress and grain refinement.PEO would reduce the largest corrosion depth by 41.6%.Moreover,PEO without sealing did not eliminate the intergranular corrosion due to the existence of the micropores and microcracks in the oxide coating.However,PEO combined with the SiO2sol–gel sealing treatment could effectively protect the AA 7A85-T7452 from intergranular corrosion because of the good corrosion resistance and barrier function of the sealed coating.
基金This research was funded by National Natural Science Foundation of China (51271080) and Opening Project of Guangdong Key Laboratory for Advanced Metallic Materials Processing (South China University of Technology) (Grant No. G J201609).
文摘The corrosion behavior of an Fe-20Mn-11Al-1.8C-5Cr alloy prepared by spark plasma sintering was investigated via immersion tests in molten aluminum at 750℃ for 1 and 4 h, respectively, and a hot work steel (AlSI H13) was included as a reference. The experimental results show that the corrosion rate of Fe-20Mn-11Al-1.8C-5Cr alloy is - 24% of that of H13 steel, suggesting that Fe-20Mn-11Al-1.8C-5Cr alloy in molten aluminum possesses better corrosion resistance than H13 steel. Detailed analysis show that k-carbide ((Fe, Mn)3AlCx) and Cr7C3 carbide precipitated in the matrix play a key role in enhancing the corrosion resistance of Fe-20Mn-11Al-1.8C-5Cr alloy in molten aluminum. Both of them show better corrosion resistance than 7-Fe matrix and H13 steel, and can also take on the role of roots in grasping the corrosion product and restrain them from spalling into the molten aluminum.