Aluminum hydride(AlH3) is a binary metal hydride that contains more than 10.1 wt% of hydrogen and possesses a high volumetric hydrogen density of 148 kg H2 m^(-3).Pristine AlH3 can readily release hydrogen at a modera...Aluminum hydride(AlH3) is a binary metal hydride that contains more than 10.1 wt% of hydrogen and possesses a high volumetric hydrogen density of 148 kg H2 m^(-3).Pristine AlH3 can readily release hydrogen at a moderate temperature below 200℃.Such high hydrogen density and low desorption temperature make AlH3 one of most promising hydrogen storage media for mobile application.This review covers the research activity on the structures,synthesis,decomposition thermodynamics and kinetics,regeneration and application validation of AlH3 over the past decades.Finally,the future research directions of AlH3 as a hydrogen storage material will be revealed.展开更多
With the concept of super-atom, first principles calculations propose a new type of super stable cage clusters AlnH3n that are much more energetic stable than the well established clusters, AlnHn+2. In the new cluste...With the concept of super-atom, first principles calculations propose a new type of super stable cage clusters AlnH3n that are much more energetic stable than the well established clusters, AlnHn+2. In the new clusters, the aluminum core-frame acts as a super-atom with n vertexes and 2n A1-A1 edges, which allow to adsorb n hydrogen atoms at the top-site and 2n at the bridge-site. Using Al12H36 as the basic unit, stable chain structures, (Al12H36)m, have been constructed following the same connection mechanism as for (A1H3)n linear polymeric structures. Apart from high hydrogen percentage per molecule, calculations have shown that these new clusters possess large heat of formation values and their combustion heat is about 4.8 times of the methane, making them a promising high energy density material.展开更多
A series of chiral N-Boc-α-aminoaldehydes were synthesized in good yields and high purity via esterification of Boc-L-amino acids followed by reduction with sodium bis (2-methoxy- ethoxy)aluminum hydride.
Magnesium hydride(MgH_(2)) is a candidate material for hydrogen storage.MgH_(2)-AlH_(3) composite shows superior hydrogen desorption properties than pure MgH_(2).However,this composite still suffers from poor cycling ...Magnesium hydride(MgH_(2)) is a candidate material for hydrogen storage.MgH_(2)-AlH_(3) composite shows superior hydrogen desorption properties than pure MgH_(2).However,this composite still suffers from poor cycling performance.In this work,NbF_(5) was utilized to improve the cycling properties of the MgH_(2)-AlH_(3) composite.Cycling hydrogen desorption studies show that NbF_(5) significantly improves the cycling stability of MgH_(2)-AlH_(3).The MgH_(2)-AlH_(3)-NbF_(5) composite can release about 2.7 wt% of hydrogen at 300℃ for 1 h and the hydrogen desorption capacity can maintain at 2.7 wt% for more than100 cycles.In comparison,the hydrogen desorption capacity of the MgH_(2)-AlH_(3) composite is decreasing with the cycle number increasing.The capacity is reduced from a maximum value of 3.3 wt% to about 1.0 wt% after 40 cycles.Brunauer-Emmett-Teller(BET) surface area measurements show that the particle size of MgH_(2)-AlH_(3) composite decreases after cycling,which means pulverization of the composite.NbF_(5) can to some extent suppress the pulverization of the composite during cycling,which partially contributes to the improvement of the cycling hydrogen desorption properties of the material.展开更多
Aluminum hydride(AlH_(3))is a covalently bonded trihydride with a high gravimetric(10.1 wt%)and volumetric(148 kg·m^(-3))hydrogen capacity.AlH_(3)decomposes to Al and H_(2)rapidly at relatively low temperatures,i...Aluminum hydride(AlH_(3))is a covalently bonded trihydride with a high gravimetric(10.1 wt%)and volumetric(148 kg·m^(-3))hydrogen capacity.AlH_(3)decomposes to Al and H_(2)rapidly at relatively low temperatures,indicating good hydrogen desorption kinetics at ambient temperature.Therefore,AlH_(3)is one of the most prospective candidates for high-capacity hydrogen storage materials.Firstly,this review briefly summarizes the basic chemical and physical characteristics of AlH_(3).Then,its synthesis,dehydrogenation thermodynamics and kinetics,regeneration and methods for improving reversibility of hydriding are described with the aim of applying this material for hydrogen storage.In accordance with the fact that AlH_(3)is generally formed by reacting Al with H_(2)at extremely high hydrogen pressure,the high-pressure study of this hydride is discussed in detail.Finally,the advantages,weaknesses,critical technical challenges and outlook of this field are discussed.展开更多
基金financially supported by the National Natural Science Foundation of China (No. 51771171, and 51971199)Education Department of Guangxi Zhuang Autonomous Region (No. 2019KY0021)the Natural Science Foundation of Guangxi Province (2019GXNSFBA185004, and 2018GXNSFAA281308)。
文摘Aluminum hydride(AlH3) is a binary metal hydride that contains more than 10.1 wt% of hydrogen and possesses a high volumetric hydrogen density of 148 kg H2 m^(-3).Pristine AlH3 can readily release hydrogen at a moderate temperature below 200℃.Such high hydrogen density and low desorption temperature make AlH3 one of most promising hydrogen storage media for mobile application.This review covers the research activity on the structures,synthesis,decomposition thermodynamics and kinetics,regeneration and application validation of AlH3 over the past decades.Finally,the future research directions of AlH3 as a hydrogen storage material will be revealed.
基金This work was supported by the Swedish Research Council, Swedish National Infrastructure for Computing, the National Natural Science Foundation of China (No.10534010 and No.20925311), the Funda-mental Research Funds for the Central Universities (No.201103255), and the China Scholarship Council.
文摘With the concept of super-atom, first principles calculations propose a new type of super stable cage clusters AlnH3n that are much more energetic stable than the well established clusters, AlnHn+2. In the new clusters, the aluminum core-frame acts as a super-atom with n vertexes and 2n A1-A1 edges, which allow to adsorb n hydrogen atoms at the top-site and 2n at the bridge-site. Using Al12H36 as the basic unit, stable chain structures, (Al12H36)m, have been constructed following the same connection mechanism as for (A1H3)n linear polymeric structures. Apart from high hydrogen percentage per molecule, calculations have shown that these new clusters possess large heat of formation values and their combustion heat is about 4.8 times of the methane, making them a promising high energy density material.
基金supported by the National Natural Science Foundation of China(No.30230400)"863"Hi-Tech Program of China(No.2004 AA2 Z3781)the State Key Program of Basic Research of China(No.2004GB518907).
文摘A series of chiral N-Boc-α-aminoaldehydes were synthesized in good yields and high purity via esterification of Boc-L-amino acids followed by reduction with sodium bis (2-methoxy- ethoxy)aluminum hydride.
基金financially supported by the National Natural Science Foundation of China(Nos.51771171 and 51971199)the Natural Science Foundation of Guangxi Province(Nos.2019GXNSFBA185004 and 2018GXNSFAA281308)the Basic Ability Improvement Project for Young and Middle-Aged Teachers in Colleges and Universities in Guangxi(No.2019KY0021)。
文摘Magnesium hydride(MgH_(2)) is a candidate material for hydrogen storage.MgH_(2)-AlH_(3) composite shows superior hydrogen desorption properties than pure MgH_(2).However,this composite still suffers from poor cycling performance.In this work,NbF_(5) was utilized to improve the cycling properties of the MgH_(2)-AlH_(3) composite.Cycling hydrogen desorption studies show that NbF_(5) significantly improves the cycling stability of MgH_(2)-AlH_(3).The MgH_(2)-AlH_(3)-NbF_(5) composite can release about 2.7 wt% of hydrogen at 300℃ for 1 h and the hydrogen desorption capacity can maintain at 2.7 wt% for more than100 cycles.In comparison,the hydrogen desorption capacity of the MgH_(2)-AlH_(3) composite is decreasing with the cycle number increasing.The capacity is reduced from a maximum value of 3.3 wt% to about 1.0 wt% after 40 cycles.Brunauer-Emmett-Teller(BET) surface area measurements show that the particle size of MgH_(2)-AlH_(3) composite decreases after cycling,which means pulverization of the composite.NbF_(5) can to some extent suppress the pulverization of the composite during cycling,which partially contributes to the improvement of the cycling hydrogen desorption properties of the material.
基金financially supported by the National Natural Science Foundation of China(Nos.51901080 and U1601212)the Foundation for Innovative Research Groups of the National Natural Science Foundation of China(No.51621001)Guangdong Basic and Applied Basic Research Foundation(No.2019A1515010039)。
文摘Aluminum hydride(AlH_(3))is a covalently bonded trihydride with a high gravimetric(10.1 wt%)and volumetric(148 kg·m^(-3))hydrogen capacity.AlH_(3)decomposes to Al and H_(2)rapidly at relatively low temperatures,indicating good hydrogen desorption kinetics at ambient temperature.Therefore,AlH_(3)is one of the most prospective candidates for high-capacity hydrogen storage materials.Firstly,this review briefly summarizes the basic chemical and physical characteristics of AlH_(3).Then,its synthesis,dehydrogenation thermodynamics and kinetics,regeneration and methods for improving reversibility of hydriding are described with the aim of applying this material for hydrogen storage.In accordance with the fact that AlH_(3)is generally formed by reacting Al with H_(2)at extremely high hydrogen pressure,the high-pressure study of this hydride is discussed in detail.Finally,the advantages,weaknesses,critical technical challenges and outlook of this field are discussed.