Chloro(5,10,15,20-tetraphenyl-porphyrinato)-aluminum/tetraethylammonium bromide(Et4NBr)in combination with bulky Lewis acid was used for the copolymerization of CO_2 and cyclohexene oxide(CHO).Bulky Lewis acid having ...Chloro(5,10,15,20-tetraphenyl-porphyrinato)-aluminum/tetraethylammonium bromide(Et4NBr)in combination with bulky Lewis acid was used for the copolymerization of CO_2 and cyclohexene oxide(CHO).Bulky Lewis acid having substituents at the ortho positions of the phenolate ligands,like methylaluminum bis(2,6-di-tert-butyl-4-methylphenolate), significantly shortened the induction period and raised the catalytic activity,the corresponding turnover frequency reached 44.9 h^(-1)in 9 h,which was 23.8% higher than th...展开更多
Carbon dioxide-based polyols with ultra-low molecular weight(ULMW,Mn<1000 g/mol)are emergent polyurethane precursors with economic and environmental benefits.However,the lack of effective proton-tolerant catalytic ...Carbon dioxide-based polyols with ultra-low molecular weight(ULMW,Mn<1000 g/mol)are emergent polyurethane precursors with economic and environmental benefits.However,the lack of effective proton-tolerant catalytic systems limits the development of this field.In this work,the polymeric aluminum porphyrin catalyst(PAPC)system was applied to the copolymerization of CO_(2)and propylene oxide,where sebacic acid,bisphenol A,poly(ethylene glycol),and water were used as chain transfer agents to achieve the controlled synthesis of CO_(2)-polyols.The molecular weight of the resulting CO_(2)-polyols could be facilely regulated in the range of 400–930 g/mol at low catalyst loadings,fully demonstrating its catalytic advantages of high activity,high product selectivity,and excellent proton tolerance of PAPC.Meanwhile,the catalytic efficiency of PAPC could reach up to 2.1–5.2 kg/g under organic CTA conditions,even reaching 1.9 kg/g using water as the CTA.The cPC content could be controlled within 1.0 wt%under the optimized conditions,indicating the excellent controllability of the PAPC system.ULMW CO_(2)-polyols combines the advantages of low viscosity(∼3000 mPa s at 25°C),low glass transition temperature(∼−73°C),and high carbonate unit content(∼40%),which is important for the development of high-performance polyurethanes.展开更多
Aluminum porphyrin complexes are heavy-metal-free and soil-tolerant green catalysts for the copolymerization of CO2 and propylene oxide(PO), but they suffer from relatively poor poly(propylene carbonate)(PPC) se...Aluminum porphyrin complexes are heavy-metal-free and soil-tolerant green catalysts for the copolymerization of CO2 and propylene oxide(PO), but they suffer from relatively poor poly(propylene carbonate)(PPC) selectivity. Herein, steric hindrance porphyrin ligand was used to enhance the PPC selectivity. Typically, a bulky anthracene-like group was incorporated into the porphyrin ring to form 5,10,15,20-tetra(1,2,3,4,5,6,7,8-octahydro-1,4:5,8-dimethanoanthracen-9-yl)porphyrin, the aluminum porphyrin complex with this ligand, in combination with bis(triphenylphosphine)iminium chloride as a co-catalyst, produced completely alternate PPC. Additionally, the obtained PPC showed high regioselectivity, with a head-to-tail linkage content(HT) of 92%. Therefore, we demonstrated that introduction of bulky steric ligand into the porphyrin ring could reduce the propylene oxide homopolymerization activity leading to excellent PPC selectivity, and improve regioselectivity for the PO ring-opening during the copolymerization.展开更多
Ring-opening copolymerization of CO_(2) and epoxides is a promising way to manufacture high value-added materials.Despite a variety of catalyst systems have been reported,the reaction is still limited by low activity ...Ring-opening copolymerization of CO_(2) and epoxides is a promising way to manufacture high value-added materials.Despite a variety of catalyst systems have been reported,the reaction is still limited by low activity and polymer selectivity.Herein,a strategy of polymerization-enhanced Lewis acidity is reported to construct a series of highly efficient polymeric aluminum porphyrin catalysts(PAPCs).The characterization of the coordination equilibrium constant(K_(eq))showed significantly enhanced Lewis acidity of PAPC(K_(eg)=18.2 L/mol)compared to the monomeric counterpart(K_(eq)=6.4 L/mol),accompanied with increased turnover frequency(TOF)from 136 h^(-1) to 5500 h^(-1).Through detailed regulation of Lewis acidity,the highly Lewis acidic PAPC-OTs displayed a record high TOF of 30,200 h^(-1) with polymer selectivity of up to 99%.展开更多
The selective synthesis of polypropylene carbonate (PPC) and cyclic propylene carbonate (CPC) from coupling reaction of CO_2 and propylene oxide (PO) is a long term pursuing target. Here we report that a tempera...The selective synthesis of polypropylene carbonate (PPC) and cyclic propylene carbonate (CPC) from coupling reaction of CO_2 and propylene oxide (PO) is a long term pursuing target. Here we report that a temperature controllable porphyrin aluminum catalyst using 5,10,15,20-tetra(1,2,3,4,5,6, 7,8-octahydro-1,4:5,8-dimethanoanthracen-g-yl)porphyrin as ligand, once in conjunction with suitable onium salt, achieved single cycloaddition or co- polymerization reaction. Only cydoaddition reaction happened at temperature above 75 ℃ to produce 100% CPC, whereas copolymerization became dominant to afford PPC with selectivity over 99% at 25℃, and the obtained PPC showed over 99% carbonate linkage and 92% head-to-tail structure. Based on systematic analysis of the electronic and steric feature in the porphyrin ligand, it was found that the electronic feature of the substituent in porphyrin ligand was decisive for PPC selectivity, porphyrin ligand bearing strong electron-donating substituents displayed a significantly reduced toler- ance towards increased temperature with respect to PPC formation. Therefore, temperature-responsive catalyst could be designed by suitable modifica- tion in porphyrin ligand, and such accurate synthesis of target product by one catalyst may create a useful and facile platform for selective PPC or CPC production.展开更多
基金The work was financially supported by the National Natural Science Foundation of China(No.20634040).
文摘Chloro(5,10,15,20-tetraphenyl-porphyrinato)-aluminum/tetraethylammonium bromide(Et4NBr)in combination with bulky Lewis acid was used for the copolymerization of CO_2 and cyclohexene oxide(CHO).Bulky Lewis acid having substituents at the ortho positions of the phenolate ligands,like methylaluminum bis(2,6-di-tert-butyl-4-methylphenolate), significantly shortened the induction period and raised the catalytic activity,the corresponding turnover frequency reached 44.9 h^(-1)in 9 h,which was 23.8% higher than th...
基金The authors greatly appreciated the financial support from National Natural Science Foundation of China(Nos.22101277,51988102,22271275,22201280).
文摘Carbon dioxide-based polyols with ultra-low molecular weight(ULMW,Mn<1000 g/mol)are emergent polyurethane precursors with economic and environmental benefits.However,the lack of effective proton-tolerant catalytic systems limits the development of this field.In this work,the polymeric aluminum porphyrin catalyst(PAPC)system was applied to the copolymerization of CO_(2)and propylene oxide,where sebacic acid,bisphenol A,poly(ethylene glycol),and water were used as chain transfer agents to achieve the controlled synthesis of CO_(2)-polyols.The molecular weight of the resulting CO_(2)-polyols could be facilely regulated in the range of 400–930 g/mol at low catalyst loadings,fully demonstrating its catalytic advantages of high activity,high product selectivity,and excellent proton tolerance of PAPC.Meanwhile,the catalytic efficiency of PAPC could reach up to 2.1–5.2 kg/g under organic CTA conditions,even reaching 1.9 kg/g using water as the CTA.The cPC content could be controlled within 1.0 wt%under the optimized conditions,indicating the excellent controllability of the PAPC system.ULMW CO_(2)-polyols combines the advantages of low viscosity(∼3000 mPa s at 25°C),low glass transition temperature(∼−73°C),and high carbonate unit content(∼40%),which is important for the development of high-performance polyurethanes.
基金financially supported by the National Natural Science Foundation of China(No.51673193)Key Project for Frontier Research(2016)Youth Innovation Promotion Association Chinese Academy of Sciences
文摘Aluminum porphyrin complexes are heavy-metal-free and soil-tolerant green catalysts for the copolymerization of CO2 and propylene oxide(PO), but they suffer from relatively poor poly(propylene carbonate)(PPC) selectivity. Herein, steric hindrance porphyrin ligand was used to enhance the PPC selectivity. Typically, a bulky anthracene-like group was incorporated into the porphyrin ring to form 5,10,15,20-tetra(1,2,3,4,5,6,7,8-octahydro-1,4:5,8-dimethanoanthracen-9-yl)porphyrin, the aluminum porphyrin complex with this ligand, in combination with bis(triphenylphosphine)iminium chloride as a co-catalyst, produced completely alternate PPC. Additionally, the obtained PPC showed high regioselectivity, with a head-to-tail linkage content(HT) of 92%. Therefore, we demonstrated that introduction of bulky steric ligand into the porphyrin ring could reduce the propylene oxide homopolymerization activity leading to excellent PPC selectivity, and improve regioselectivity for the PO ring-opening during the copolymerization.
基金supported by National Natural Science Foundation of China(Nos.51988102,22271275,22201280,22101277)Special Project of High-tech Industrialization of Cooperation between Jilin Province and Chinese Academy of Sciences(No.2022SYHz0004)Changchun Science and Technology Development Plan Funding Project(No.21ZY10).
文摘Ring-opening copolymerization of CO_(2) and epoxides is a promising way to manufacture high value-added materials.Despite a variety of catalyst systems have been reported,the reaction is still limited by low activity and polymer selectivity.Herein,a strategy of polymerization-enhanced Lewis acidity is reported to construct a series of highly efficient polymeric aluminum porphyrin catalysts(PAPCs).The characterization of the coordination equilibrium constant(K_(eq))showed significantly enhanced Lewis acidity of PAPC(K_(eg)=18.2 L/mol)compared to the monomeric counterpart(K_(eq)=6.4 L/mol),accompanied with increased turnover frequency(TOF)from 136 h^(-1) to 5500 h^(-1).Through detailed regulation of Lewis acidity,the highly Lewis acidic PAPC-OTs displayed a record high TOF of 30,200 h^(-1) with polymer selectivity of up to 99%.
文摘The selective synthesis of polypropylene carbonate (PPC) and cyclic propylene carbonate (CPC) from coupling reaction of CO_2 and propylene oxide (PO) is a long term pursuing target. Here we report that a temperature controllable porphyrin aluminum catalyst using 5,10,15,20-tetra(1,2,3,4,5,6, 7,8-octahydro-1,4:5,8-dimethanoanthracen-g-yl)porphyrin as ligand, once in conjunction with suitable onium salt, achieved single cycloaddition or co- polymerization reaction. Only cydoaddition reaction happened at temperature above 75 ℃ to produce 100% CPC, whereas copolymerization became dominant to afford PPC with selectivity over 99% at 25℃, and the obtained PPC showed over 99% carbonate linkage and 92% head-to-tail structure. Based on systematic analysis of the electronic and steric feature in the porphyrin ligand, it was found that the electronic feature of the substituent in porphyrin ligand was decisive for PPC selectivity, porphyrin ligand bearing strong electron-donating substituents displayed a significantly reduced toler- ance towards increased temperature with respect to PPC formation. Therefore, temperature-responsive catalyst could be designed by suitable modifica- tion in porphyrin ligand, and such accurate synthesis of target product by one catalyst may create a useful and facile platform for selective PPC or CPC production.