The effect of vanadium carbide(VC) on the grain size of commercial pure aluminum was experimentally investigated by varying the content of VC, the holding time, and casting temperature. The refining efficiencies of ...The effect of vanadium carbide(VC) on the grain size of commercial pure aluminum was experimentally investigated by varying the content of VC, the holding time, and casting temperature. The refining efficiencies of VC and Al5Ti1 B were also compared. The refined samples of commercial pure aluminum were examined using optical microscopy, scanning electron microscopy(SEM) and energy-dispersive spectroscopy(EDS). The results suggest that VC is a good refiner of commercial pure aluminum. The addition of only 0.3wt% VC can decrease the grain size of aluminum to 102 μm, whereas the casting temperature and holding time have little effect on the grain size. The refining efficiency of VC is better than that of Al5Ti1 B. The VC particles in molten aluminum act as nuclei and the grain refinement of aluminum alloys by VC particles is achieved via heterogeneous nucleation.展开更多
A new Al-5Ti-0.75B-0.2C master alloy was successfully prepared by self-propagating high-temperature(SHS)reaction from an Al-Ti-B_4C system with molten Al.Microstructure and phase characterization of the prepared Al-...A new Al-5Ti-0.75B-0.2C master alloy was successfully prepared by self-propagating high-temperature(SHS)reaction from an Al-Ti-B_4C system with molten Al.Microstructure and phase characterization of the prepared Al-5Ti-0.75B-0.2C master alloy show that the nearly spherical TiC particles,hexagonal or rectangular TiB_2 particles,and blocklike TiAl_3 particles distribute uniformly in the aluminum matrix.Grain refining test on commercial pure aluminum indicates that Al-5Ti-0.75B-0.2C master alloy exhibits a better grain refining performance than Al-5Ti-lB master alloy.By addition of 0.2 wt%Al-5Ti-0.75B-0.2C master alloy,the average grain size of a-Al can be effectively refined to160 ± 5 μm from about 3000 μm,and the tensile strength and elongation are increased by about 20%and 14.1%due to the grain refinement.展开更多
Aluminum becomes the most popular nonferrous metal and is widely used in many fields such as packaging,building transportation and electrical materials due to its rich resource, light weight, good mechanical propertie...Aluminum becomes the most popular nonferrous metal and is widely used in many fields such as packaging,building transportation and electrical materials due to its rich resource, light weight, good mechanical properties, suitable corrosion resistance and excellent electrical conductivity. Grain refinement, which is obtained by changing the size of grain structure by different techniques, is a preferred method to improve simultaneously the strength and plasticity of metallic materials. Therefore, grain refining of aluminum is regarded as a key technique in aluminum processing industry.Up to now, there have been a number of techniques for aluminum grain refining. All the techniques can be classified as four categories as follows: grain refining by vibration and stirring during solidification, rapid solidification, the addition of grain refiner and severe plastic deformation. Each of them has its own merits and demerits as well as applicable conditions, and there are still some arguments in the understanding of the mechanisms of these techniques. In this article, the research progresses and challenges encountered in the present techniques and the future research issues and directions are summarized.展开更多
基金financially supported by the Department of Science and Technology of Sichuan Province (Nos. 2015KJT0081-2015G, 2015GZ0052, and 13CGZH0200)
文摘The effect of vanadium carbide(VC) on the grain size of commercial pure aluminum was experimentally investigated by varying the content of VC, the holding time, and casting temperature. The refining efficiencies of VC and Al5Ti1 B were also compared. The refined samples of commercial pure aluminum were examined using optical microscopy, scanning electron microscopy(SEM) and energy-dispersive spectroscopy(EDS). The results suggest that VC is a good refiner of commercial pure aluminum. The addition of only 0.3wt% VC can decrease the grain size of aluminum to 102 μm, whereas the casting temperature and holding time have little effect on the grain size. The refining efficiency of VC is better than that of Al5Ti1 B. The VC particles in molten aluminum act as nuclei and the grain refinement of aluminum alloys by VC particles is achieved via heterogeneous nucleation.
基金supported by the Scientific and Technical Project of Sichuan Province(Nos.13CGZHZX0200,2014GZX0064,2015GZ0057)
文摘A new Al-5Ti-0.75B-0.2C master alloy was successfully prepared by self-propagating high-temperature(SHS)reaction from an Al-Ti-B_4C system with molten Al.Microstructure and phase characterization of the prepared Al-5Ti-0.75B-0.2C master alloy show that the nearly spherical TiC particles,hexagonal or rectangular TiB_2 particles,and blocklike TiAl_3 particles distribute uniformly in the aluminum matrix.Grain refining test on commercial pure aluminum indicates that Al-5Ti-0.75B-0.2C master alloy exhibits a better grain refining performance than Al-5Ti-lB master alloy.By addition of 0.2 wt%Al-5Ti-0.75B-0.2C master alloy,the average grain size of a-Al can be effectively refined to160 ± 5 μm from about 3000 μm,and the tensile strength and elongation are increased by about 20%and 14.1%due to the grain refinement.
基金supports of the National Natural Science Foundation of China under Grant Nos.51474063,51674077 and 51504065
文摘Aluminum becomes the most popular nonferrous metal and is widely used in many fields such as packaging,building transportation and electrical materials due to its rich resource, light weight, good mechanical properties, suitable corrosion resistance and excellent electrical conductivity. Grain refinement, which is obtained by changing the size of grain structure by different techniques, is a preferred method to improve simultaneously the strength and plasticity of metallic materials. Therefore, grain refining of aluminum is regarded as a key technique in aluminum processing industry.Up to now, there have been a number of techniques for aluminum grain refining. All the techniques can be classified as four categories as follows: grain refining by vibration and stirring during solidification, rapid solidification, the addition of grain refiner and severe plastic deformation. Each of them has its own merits and demerits as well as applicable conditions, and there are still some arguments in the understanding of the mechanisms of these techniques. In this article, the research progresses and challenges encountered in the present techniques and the future research issues and directions are summarized.