To have an insight into the occurrence of inverse Hall-Petch relationship in ultrafine-grained(UFG) aluminum alloys produced by severe plastic deformation(SPD),ultra-SPD(i.e.inducing several ten thousand shear strains...To have an insight into the occurrence of inverse Hall-Petch relationship in ultrafine-grained(UFG) aluminum alloys produced by severe plastic deformation(SPD),ultra-SPD(i.e.inducing several ten thousand shear strains via high-pressure torsion,HPT) followed by aging is applied to an Al-La-Ce alloy.Average nanograin sizes of 40 and 80 nm are successfully achieved together with strain-induced Lomer-Cottrell dislocation lock formation and aging-induced semi-coherent Al_(11)(La,Ce)_3 precipitation.Analysis of hardening mechanisms in this alloy compared to SPD-processed pure aluminum with micrometer grain sizes,SPD-processed Al-based alloys with submicrometer grain sizes and ultra-SPD-processed Al-Ca alloy with nanograin sizes reveals the presence of two breaks in the Hall-Petch relationship.First,a positive upbreak appears when the grain sizes decrease from micrometer to submicrometer which is due to extra hardening by solute-dislocation interactions.Second,a negative down-break and softening occur by decreasing the grain sizes from submicrometer to nanometer which is caused by weakening the dislocation hardening mechanism with minor contribution of the inverse Hall-Petch mechanism.Detailed analyses confirm that nanograin formation is not necessarily a solution for extra hardening of Al-based alloys and other accompanying strategies such as grain-boundary segregation and precipitation are required to overcome such a down-break and softening.展开更多
基金financially supported by the Light Metals Educational Foundation of Japan,the Ministry of Education,Culture,Sports,Science and Technology (MEXT) of Japan (No. 19H05176,21H00150)the Russian Science Foundation (No. 17-19-01311)。
文摘To have an insight into the occurrence of inverse Hall-Petch relationship in ultrafine-grained(UFG) aluminum alloys produced by severe plastic deformation(SPD),ultra-SPD(i.e.inducing several ten thousand shear strains via high-pressure torsion,HPT) followed by aging is applied to an Al-La-Ce alloy.Average nanograin sizes of 40 and 80 nm are successfully achieved together with strain-induced Lomer-Cottrell dislocation lock formation and aging-induced semi-coherent Al_(11)(La,Ce)_3 precipitation.Analysis of hardening mechanisms in this alloy compared to SPD-processed pure aluminum with micrometer grain sizes,SPD-processed Al-based alloys with submicrometer grain sizes and ultra-SPD-processed Al-Ca alloy with nanograin sizes reveals the presence of two breaks in the Hall-Petch relationship.First,a positive upbreak appears when the grain sizes decrease from micrometer to submicrometer which is due to extra hardening by solute-dislocation interactions.Second,a negative down-break and softening occur by decreasing the grain sizes from submicrometer to nanometer which is caused by weakening the dislocation hardening mechanism with minor contribution of the inverse Hall-Petch mechanism.Detailed analyses confirm that nanograin formation is not necessarily a solution for extra hardening of Al-based alloys and other accompanying strategies such as grain-boundary segregation and precipitation are required to overcome such a down-break and softening.