期刊文献+
共找到16,212篇文章
< 1 2 250 >
每页显示 20 50 100
Activation of autophagy by Citri Reticulatae Semen extract ameliorates amyloid-beta-induced cell death and cognition deficits in Alzheimer’s disease 被引量:3
1
作者 Yong Tang Jing Wei +14 位作者 Xiao-Fang Wang Tao Long Xiaohong Xiang Liqun Qu Xingxia Wang Chonglin Yu Xingli Xiao Xueyuan Hu Jing Zeng Qin Xu Anguo Wu Jianming Wu Dalian Qin Xiaogang Zhou Betty Yuen-Kwan Law 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第11期2467-2479,共13页
Amyloid-beta-induced neuronal cell death contributes to cognitive decline in Alzheimer’s disease.Citri Reticulatae Semen has diverse beneficial effects on neurodegenerative diseases,including Parkinson’s and Hunting... Amyloid-beta-induced neuronal cell death contributes to cognitive decline in Alzheimer’s disease.Citri Reticulatae Semen has diverse beneficial effects on neurodegenerative diseases,including Parkinson’s and Huntington’s diseases,however,the effect of Citri Reticulatae Semen on Alzheimer’s disease remains unelucidated.In the current study,the anti-apoptotic and autophagic roles of Citri Reticulatae Semen extract on amyloid-beta-induced apoptosis in PC12 cells were first investigated.Citri Reticulatae Semen extract protected PC12 cells from amyloid-beta-induced apoptosis by attenuating the Bax/Bcl-2 ratio via activation of autophagy.In addition,Citri Reticulatae Semen extract was confirmed to bind amyloid-beta as revealed by biolayer interferometry in vitro,and suppress amyloid-beta-induced pathology such as paralysis,in a transgenic Caenorhabditis elegans in vivo model.Moreover,genetically defective Caenorhabditis elegans further confirmed that the neuroprotective effect of Citri Reticulatae Semen extract was autophagy-dependent.Most importantly,Citri Reticulatae Semen extract was confirmed to improve cognitive impairment,neuronal injury and amyloid-beta burden in 3×Tg Alzheimer’s disease mice.As revealed by both in vitro and in vivo models,these results suggest that Citri Reticulatae Semen extract is a potential natural therapeutic agent for Alzheimer’s disease via its neuroprotective autophagic effects. 展开更多
关键词 alzheimer’s disease AMYLOID-BETA apoptosis AUTOPHAGY Caenorhabditis elegans Citri Reticulatae Semen
下载PDF
Sorl1 knockout inhibits expression of brain-derived neurotrophic factor:involvement in the development of late-onset Alzheimer's disease 被引量:3
2
作者 Mingri Zhao Xun Chen +7 位作者 Jiangfeng Liu Yanjin Feng Chen Wang Ting Xu Wanxi Liu Xionghao Liu Mujun Liu Deren Hou 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第7期1602-1607,共6页
Sortilin-related receptor 1(SORL1)is a critical gene associated with late-onset Alzheimer’s disease.SORL1 contributes to the development and progression of this neurodegenerative condition by affecting the transport ... Sortilin-related receptor 1(SORL1)is a critical gene associated with late-onset Alzheimer’s disease.SORL1 contributes to the development and progression of this neurodegenerative condition by affecting the transport and metabolism of intracellularβ-amyloid precursor protein.To better understand the underlying mechanisms of SORL1 in the pathogenesis of late-onset Alzheimer s disease,in this study,we established a mouse model of SorI1 gene knockout using cluste red regularly inters paced short palindro mic repeats-associated protein 9 technology.We found that Sorl1-knocko ut mice displayed deficits in learning and memory.Furthermore,the expression of brain-derived neurotrophic factor was significantly downregulated in the hippocampus and co rtex,and amyloidβ-protein deposits were observed in the brains of 5orl1-knockout mice.In vitro,hippocampal neuronal cell synapses from homozygous Sorl1-knockout mice were impaired.The expression of synaptic proteins,including Drebrin and NR2B,was significantly reduced,and also their colocalization.Additionally,by knocking out the Sorl1 gene in N2a cells,we found that expression of the N-methyl-D-aspartate receptor,NR2B,and cyclic adenosine monophosphate-response element binding protein was also inhibited.These findings suggest that SORL1 participates in the pathogenesis of late-onset Alzheimer s disease by regulating the N-methyl-D-aspartate receptor NR2B/cyclic adenosine monophosphate-response element binding protein signaling axis. 展开更多
关键词 brain-derived neurotrophic factor late-onset alzheimer’s disease N-methyl-D-aspartate receptor sortilin-related receptor 1 SYNAPSE
下载PDF
Rebuilding insight into the pathophysiology of Alzheimer’s disease through new blood-brain barrier models 被引量:2
3
作者 Kinya Matsuo Hideaki Nshihara 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第9期1954-1960,共7页
The blood-brain barrier is a unique function of the microvasculature in the brain parenchyma that maintains homeostasis in the central nervous system.Blood-brain barrier breakdown is a common pathology in various neur... The blood-brain barrier is a unique function of the microvasculature in the brain parenchyma that maintains homeostasis in the central nervous system.Blood-brain barrier breakdown is a common pathology in various neurological diseases,such as Alzheimer’s disease,stroke,multiple sclerosis,and Parkinson’s disease.Traditionally,it has been considered a consequence of neuroinflammation or neurodegeneration,but recent advanced imaging techniques and detailed studies in animal models show that blood-brain barrier breakdown occurs early in the disease process and may precede neuronal loss.Thus,the blood-brain barrier is attractive as a potential therapeutic target for neurological diseases that lack effective therapeutics.To elucidate the molecular mechanism underlying blood-brain barrier breakdown and translate them into therapeutic strategies for neurological diseases,there is a growing demand for experimental models of human origin that allow for functional assessments.Recently,several human induced pluripotent stem cell-derived blood-brain barrier models have been established and various in vitro blood-brain barrier models using microdevices have been proposed.Especially in the Alzheimer’s disease field,the human evidence for blood-brain barrier dysfunction has been demonstrated and human induced pluripotent stem cell-derived blood-brain barrier models have suggested the putative molecular mechanisms of pathological blood-brain barrier.In this review,we summarize recent evidence of blood-brain barrier dysfunction in Alzheimer’s disease from pathological analyses,imaging studies,animal models,and stem cell sources.Additionally,we discuss the potential future directions for blood-brain barrier research. 展开更多
关键词 alzheimer’s disease blood-brain barrier human induced pluripotent stem cells
下载PDF
Interplay between microglia and environmental risk factors in Alzheimer's disease 被引量:2
4
作者 Miaoping Zhang Chunmei Liang +2 位作者 Xiongjin Chen Yujie Cai Lili Cui 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第8期1718-1727,共10页
Alzheimer s disease,among the most common neurodegenerative disorders,is chara cterized by progressive cognitive impairment.At present,the Alzheimer’s disease main risk remains genetic ris ks,but major environmental ... Alzheimer s disease,among the most common neurodegenerative disorders,is chara cterized by progressive cognitive impairment.At present,the Alzheimer’s disease main risk remains genetic ris ks,but major environmental fa ctors are increasingly shown to impact Alzheimer’s disease development and progression.Microglia,the most important brain immune cells,play a central role in Alzheimer’s disease pathogenesis and are considered environmental and lifestyle"sensors."Factors like environmental pollution and modern lifestyles(e.g.,chronic stress,poor dietary habits,sleep,and circadian rhythm disorde rs)can cause neuroinflammato ry responses that lead to cognitive impairment via microglial functioning and phenotypic regulation.However,the specific mechanisms underlying interactions among these facto rs and microglia in Alzheimer’s disease are unclear.Herein,we:discuss the biological effects of air pollution,chronic stress,gut micro biota,sleep patterns,physical exercise,cigarette smoking,and caffeine consumption on microglia;consider how unhealthy lifestyle factors influence individual susceptibility to Alzheimer’s disease;and present the neuroprotective effects of a healthy lifestyle.Toward intervening and controlling these environmental risk fa ctors at an early Alzheimer’s disease stage,understanding the role of microglia in Alzheimer’s disease development,and to rgeting strategies to to rget microglia,co uld be essential to future Alzheimer’s disease treatments. 展开更多
关键词 alzheimer’s disease chronic stress environmental factor gut microbiota MICROGLIA particulate matter with diameter<2.5μm
下载PDF
Neural stem cell-derived exosomes promote mitochondrial biogenesis and restore abnormal protein distribution in a mouse model of Alzheimer's disease 被引量:1
5
作者 Bo Li Yujie Chen +10 位作者 Yan Zhou Xuanran Feng Guojun Gu Shuang Han Nianhao Cheng Yawen Sun Yiming Zhang Jiahui Cheng Qi Zhang Wei Zhang Jianhui Liu 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第7期1593-1601,共9页
Mitochondrial dysfunction is a hallmark of Alzheimer’s disease.We previously showed that neural stem cell-derived extracellular vesicles improved mitochondrial function in the cortex of AP P/PS1 mice.Because Alzheime... Mitochondrial dysfunction is a hallmark of Alzheimer’s disease.We previously showed that neural stem cell-derived extracellular vesicles improved mitochondrial function in the cortex of AP P/PS1 mice.Because Alzheimer’s disease affects the entire brain,further research is needed to elucidate alterations in mitochondrial metabolism in the brain as a whole.Here,we investigated the expression of several important mitochondrial biogenesis-related cytokines in multiple brain regions after treatment with neural stem cell-derived exosomes and used a combination of whole brain clearing,immunostaining,and lightsheet imaging to clarify their spatial distribution.Additionally,to clarify whether the sirtuin 1(SIRT1)-related pathway plays a regulatory role in neural stem cell-de rived exosomes interfering with mitochondrial functional changes,we generated a novel nervous system-SIRT1 conditional knoc kout AP P/PS1mouse model.Our findings demonstrate that neural stem cell-de rived exosomes significantly increase SIRT1 levels,enhance the production of mitochondrial biogenesis-related fa ctors,and inhibit astrocyte activation,but do not suppress amyloid-βproduction.Thus,neural stem cell-derived exosomes may be a useful therapeutic strategy for Alzheimer’s disease that activates the SIRT1-PGC1αsignaling pathway and increases NRF1 and COXIV synthesis to improve mitochondrial biogenesis.In addition,we showed that the spatial distribution of mitochondrial biogenesis-related factors is disrupted in Alzheimer’s disease,and that neural stem cell-derived exosome treatment can reverse this effect,indicating that neural stem cell-derived exosomes promote mitochondrial biogenesis. 展开更多
关键词 alzheimer’s disease mitochondrial biogenesis neural stem cell-derived exosome SIRT1-PGC1α regional brain distribution whole brain clearing and imaging
下载PDF
Tanshinone ⅡA improves Alzheimer’s disease via RNA nuclearenriched abundant transcript 1/microRNA-291a-3p/member RAS oncogene family Rab22a axis 被引量:1
6
作者 Long-Xiu Yang Man Luo Sheng-Yu Li 《World Journal of Psychiatry》 SCIE 2024年第4期563-581,共19页
BACKGROUND Alzheimer’s disease(AD)is a neurodegenerative condition characterized by oxidative stress and neuroinflammation.Tanshinone ⅡA(Tan-ⅡA),a bioactive compound isolated from Salvia miltiorrhiza plants,has sho... BACKGROUND Alzheimer’s disease(AD)is a neurodegenerative condition characterized by oxidative stress and neuroinflammation.Tanshinone ⅡA(Tan-ⅡA),a bioactive compound isolated from Salvia miltiorrhiza plants,has shown potential neuroprotective effects;however,the mechanisms underlying such a function remain unclear.AIM To investigate potential Tan-ⅡA neuroprotective effects in AD and to elucidate their underlying mechanisms.METHODS Hematoxylin and eosin staining was utilized to analyze structural brain tissue morphology.To assess changes in oxidative stress and neuroinflammation,we performed enzyme-linked immunosorbent assay and western blotting.Additionally,the effect of Tan-ⅡA on AD cell models was evaluated in vitro using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay.Genetic changes related to the long non-coding RNA(lncRNA)nuclear-enriched abundant transcript 1(NEAT1)/microRNA(miRNA,miR)-291a-3p/member RAS oncogene family Rab22a axis were assessed through reverse transcription quantitative polymerase chain reaction.RESULTS In vivo,Tan-ⅡA treatment improved neuronal morphology and attenuated oxidative stress and neuroinflammation in the brain tissue of AD mice.In vitro experiments showed that Tan-ⅡA dose-dependently ameliorated the amyloid-beta 1-42-induced reduction of neural stem cell viability,apoptosis,oxidative stress,and neuroinflammation.In this process,the lncRNA NEAT1-a potential therapeutic target-is highly expressed in AD mice and downregulated via Tan-ⅡA treatment.Mechanistically,NEAT1 promotes the transcription and translation of Rab22a via miR-291a-3p,which activates nuclear factor kappa-B(NF-κB)signaling,leading to activation of the pro-apoptotic B-cell lymphoma 2-associated X protein and inhibition of the anti-apoptotic B-cell lymphoma 2 protein,which exacerbates AD.Tan-ⅡA intervention effectively blocked this process by inhibiting the NEAT1/miR-291a-3p/Rab22a axis and NF-κB signaling.CONCLUSION This study demonstrates that Tan-ⅡA exerts neuroprotective effects in AD by modulating the NEAT1/miR-291a-3p/Rab22a/NF-κB signaling pathway,serving as a foundation for the development of innovative approaches for AD therapy. 展开更多
关键词 TanshinoneⅡA alzheimer’s disease Nuclear-enriched abundant transcript 1 Member of RAS oncogene family Rab22a Reactive oxygen species
下载PDF
Nanomaterials-mediated lysosomal regulation:a robust protein-clearance approach for the treatment of Alzheimer’s disease
7
作者 Mengqi Hao Jianjian Chu +8 位作者 Tinglin Zhang Tong Yin Yuankai Gu Wendanqi Liang Wenbo Ji Jianhua Zhuang Yan Liu Jie Gao You Yin 《Neural Regeneration Research》 SCIE CAS 2025年第2期424-439,共16页
Alzheimer’s disease is a debilitating,progressive neurodegenerative disorder characterized by the progressive accumulation of abnormal proteins,including amyloid plaques and intracellular tau tangles,primarily within... Alzheimer’s disease is a debilitating,progressive neurodegenerative disorder characterized by the progressive accumulation of abnormal proteins,including amyloid plaques and intracellular tau tangles,primarily within the brain.Lysosomes,crucial intracellular organelles responsible for protein degradation,play a key role in maintaining cellular homeostasis.Some studies have suggested a link between the dysregulation of the lysosomal system and pathogenesis of neurodegenerative diseases,including Alzheimer’s disease.Restoring the normal physiological function of lysosomes hold the potential to reduce the pathological burden and improve the symptoms of Alzheimer’s disease.Currently,the efficacy of drugs in treating Alzheimer’s disease is limited,with major challenges in drug delivery efficiency and targeting.Recently,nanomaterials have gained widespread use in Alzheimer’s disease drug research owing to their favorable physical and chemical properties.This review aims to provide a comprehensive overview of recent advances in using nanomaterials(polymeric nanomaterials,nanoemulsions,and carbon-based nanomaterials)to enhance lysosomal function in treating Alzheimer’s disease.This review also explores new concepts and potential therapeutic strategies for Alzheimer’s disease through the integration of nanomaterials and modulation of lysosomal function.In conclusion,this review emphasizes the potential of nanomaterials in modulating lysosomal function to improve the pathological features of Alzheimer’s disease.The application of nanotechnology to the development of Alzheimer’s disease drugs brings new ideas and approaches for future treatment of this disease. 展开更多
关键词 alzheimer’s disease autophagy dysfunction lysosomal acidification lysosomal system nanomaterials neurodegenerative diseases
下载PDF
Amyloid-β-induced disruption of axon-initial-segment mitochondria localization:consequences for TAU missorting in Alzheimer's disease pathology
8
作者 Daniel Adam Felix Langerscheidt Hans Zempel 《Neural Regeneration Research》 SCIE CAS 2025年第5期1407-1408,共2页
TAU is a neuronal microtubule-associated protein preferentially located in axons.In a battery of neurodegenerative diseases termed"tauopathies,"including Alzheimer's disease (AD),TAU is missorted and abn... TAU is a neuronal microtubule-associated protein preferentially located in axons.In a battery of neurodegenerative diseases termed"tauopathies,"including Alzheimer's disease (AD),TAU is missorted and abnormally phosphorylated,leading to filamentous accumulations of hyperphosphorylated TAU,a pathological hallmark and potential disease driver of AD and related tauopathies (Zempel,2024). 展开更多
关键词 alzheimer TAU diseases
下载PDF
Research progresses of resting-state functional MRI in mild cognitive impairment and Alzheimer's disease
9
作者 DUAN Huanqin LI Linqin QIU Lihua 《中国医学影像技术》 CSCD 北大核心 2024年第8期1254-1257,共4页
Alzheimer's disease(AD)is a prevalent neurodegenerative disease characterized by cognitive decline in the early stage.Mild cognitive impairment(MCI)is considered as an intermediate stage between normal aging and A... Alzheimer's disease(AD)is a prevalent neurodegenerative disease characterized by cognitive decline in the early stage.Mild cognitive impairment(MCI)is considered as an intermediate stage between normal aging and AD.In recent years,studies related to resting-state functional MRI(rs-fMRI)indicated that the occurrence and development process of MCI and AD might be closely linked to spontaneous brain activity and alterations in functional connectivity among brain regions,and rs-fMRI could provide important reference for specific diagnosis and early treatment of MCI and AD.The research progresses of rs-fMRI for MCI and AD were reviewed in this article. 展开更多
关键词 alzheimer disease cognition disorders magnetic resonance imaging
下载PDF
Exploring the vital role of microglial membrane receptors in Alzheimer’s disease pathogenesis: a comprehensive review
10
作者 JUN-FENG ZHAO YI-RAN JIANG +2 位作者 TIAN-LIN GUO YONG-QING JIAO XUN WANG 《BIOCELL》 SCIE 2024年第7期1011-1022,共12页
Neurodegenerative diseases constitute a broad category of diseases caused by the degeneration of the neurons.They are mainly manifested by the gradual loss of neuron structure and function and eventually can cause dea... Neurodegenerative diseases constitute a broad category of diseases caused by the degeneration of the neurons.They are mainly manifested by the gradual loss of neuron structure and function and eventually can cause death or loss of neurons.As the global population ages rapidly,increased people are being diagnosed with neurodegenerative diseases.It has been established that the onset of Alzheimer’s disease(AD)is closely linked with increasing age and its major pathological features include amyloid-beta plaques(Aβ),Tau hyperphosphorylation,Neurofibrillary tangles(NFTs),neuronal death as well as synaptic loss.The involvement of microglia is crucial in the pathogenesis and progression of AD and exhibits a dual role.For instance,in the early stage of AD,microglia surface membrane proteins or receptors can participate in immunophagocytosis,and anti-inflammatory functions and act as a physical barrier after recognizing various ligands such as Aβand NFTs.However,in the later stage of the disease,membrane receptors on the surface of microglia can cause its activation to release a substantial quantity of pro-inflammatory factors.Which can amplify the neuroinflammatory response.The rapid decline of normal immune phagocytosis can result in the continuous accumulation of abnormal proteins,leading to neuronal dysfunction and destruction of the formed physical barrier as well as the neurovascular microenvironment.It can also increase the transformation of microglia from anti-inflammatory phenotype M2 to pro-inflammatory phenotype M1,induce severe neuronal injury or apoptosis,and aggravate the progression of AD.Due to few articles have focused on the AD-related membrane protein receptors on microglia,thus in this paper,we have reviewed several representative microglial membrane proteins or receptors about their specific roles and functions implicated in AD,and expect that there will be more in-depth research and scientific research results in the treatment of AD by targeted regulation of microglia membrane protein receptors in the future. 展开更多
关键词 NEURODEGENERATION Glial cell RECEPTOR alzheimer’s disease
下载PDF
Environmental enrichment in combination with Bifidobacterium breve HNXY26M4 intervention amplifies neuroprotective benefits in a mouse model of Alzheimer's disease by modulating glutamine metabolism of the gut microbiome
11
作者 Guangsu Zhu Min Guo +3 位作者 Jianxin Zhao Hao Zhang Gang Wang Wei Chen 《Food Science and Human Wellness》 SCIE CSCD 2024年第2期982-992,共11页
The gut microbiota-brain axis has emerged as a novel target for Alzheimer's disease(AD),a neurodegenerative disease characterised by behavioural and cognitive impairment.However,most previous microbiome-based inte... The gut microbiota-brain axis has emerged as a novel target for Alzheimer's disease(AD),a neurodegenerative disease characterised by behavioural and cognitive impairment.However,most previous microbiome-based intervention studies have focused on single factors and yielded only modest cognitive improvements.Here,we proposed a multidomain intervention strategy that combined Bifidobacterium breve treatment with environmental enrichment(EE)training.In this study,we found that compared with EE or B.breve treatment alone,B.breve intervention combined with EE amplified its neuroprotective effects on AD mice,as reflected by improved cognition,inhibited neuroinflammation and enhanced synaptic function.Moreover,using microbiome and metabolome profiling,we found that the combination of B.breve and EE treatment restored AD-related gut microbiota dysbiosis and reversed microbial metabolite changes.Finally,by integrating behavioural and neurological data with metabolomic profiles,we revealed that the underlying mechanism may involve the modulation of microbiota-derived glutamine metabolism via gut-brain interactions.Collectively,combined B.breve intervention with EE treatment can alleviate AD-related cognitive impairment and improve brain function by regulating glutamine metabolism of the gut microbiome.Our findings provide a promising multidomain intervention strategy,with a combination of dietary microbiome-based and lifestyle-targeted interventions,to promote brain function and delay the progression of AD. 展开更多
关键词 alzheimer’s disease Bifidobacterium breve Environmental enrichment Glutamine metabolism Microbiota-gut-brain axis
下载PDF
Effectiveness of anti-psychiatric treatment on visual and haptic perceptual disorder for a patient with Alzheimer’s disease: A case report
12
作者 Ting Xu Xi Mei +2 位作者 Zheng Zhao Yue-Hong Liu Cheng-Ying Zheng 《World Journal of Psychiatry》 SCIE 2024年第9期1404-1410,共7页
BACKGROUND Perception is frequently impaired in patients with Alzheimer’s disease(AD).Several patients exhibit visual or haptic hallucinations.CASE SUMMARY A 71-year-old Chinese man presented with visual and haptic h... BACKGROUND Perception is frequently impaired in patients with Alzheimer’s disease(AD).Several patients exhibit visual or haptic hallucinations.CASE SUMMARY A 71-year-old Chinese man presented with visual and haptic hallucinations he had been experiencing for 2 weeks.The clinical manifestations were the feeling of insects crawling and biting the limbs and geison.He looked for the insects while itching and scratching,which led to skin breakage on the limbs.He was treated with topical and anti-allergic drugs in several dermatology departments without any significant improvement.After admission,the patient was administered risperidone(0.5 mg)and duloxetine(2 mg/day).One week later,the dose of risperidone was increased to 2 mg/day,and that of duloxetine was increased to 60 mg/day.After 2 weeks of treatment,the patient’s sensation of insects crawling and biting disappeared,and his mood stabilized.CONCLUSION This patient manifested psychiatric behavioral symptoms caused by AD brain atrophy.It was important to re-evaluate the patient’s cognitive-psychological status when the patient repeatedly went to the hospital for treatment.Follow-up attention to cognitive function and the consideration of perceptual deficits as early manifestations of AD should be considered. 展开更多
关键词 Perceptual disorders Visual hallucination Haptic hallucination alzheimer’s disease Anti-psychiatric treatment Case report
下载PDF
Early Quality Life Impairment in Alzheimer Disease’s Patients in Geriatric Department: About 214 Cases in Pitié Salpêtrière Hospital of Paris (France)
13
作者 Andia Abdoulkader Audrey Rouet +4 位作者 Benedicte Dieudonné Jacque Boaddert Charlotte Tomeo Sandrine Greffard Marc Verny 《Open Journal of Internal Medicine》 2024年第1期30-42,共13页
Alzheimer’s disease (AD) is the most common neurodegenerative disease causing an alteration of life quality in the terminal stage. The purpose was to report 14 years of experience about the early impact on the qualit... Alzheimer’s disease (AD) is the most common neurodegenerative disease causing an alteration of life quality in the terminal stage. The purpose was to report 14 years of experience about the early impact on the quality of life of patients with AD. Methodology: Descriptive retrospective study over 14 years in the geriatric department of Pitié Salpêtrière Hospital, using the activity of daily living, Instrumental activity of daily living, neuropsychological inventory and Hoen Yahr scale evaluated at the time of diagnosis of AD according to the National Institute of Neurological and Communicative Disorders and Stroke-Alzheimer Disease’s and Related Disorders Association diagnostic criteria. Results: A total of 214 exploitable files had been listed. At the moment of diagnosis, the mean age was 82.1 years with extremes 68 to 95 with sex ratio 1.6 in women’s favor. The mean socio-cultural level was 4.9 with extremes about 0 to 7. There was poly pathology with a mean Cumulative Illness Rate Scale = 4.6 with extremes 0 to 16. the mean cognitive status was moderate = 22.5 with extremes 0 to 30. Quality life showed moderate impairment of IADL = 9.2 with extreme 3 to 11 compared to activity of daily living. The activity of daily living was more affected in 68 - 80-year-olds, while poly pathology impacted more on IADL in men. The cognitive impairment was more deficient in IADL when the MMSE test was low. The common disorders at the NPI were psychological, behavioral and psychotic. Conclusion: At the early diagnosis of Alzheimer’s Disease cognitive deficiencies were predominant and influenced on global Instrumental activity and psychological, behavioral disorders. 展开更多
关键词 alzheimer’s disease IADL ADL NPI PAriS FRANCE
下载PDF
Verification of the Physiological Therapeutic Effects of Harvesting Activities in a Patient with Moderate Alzheimer’s Disease with Long-Term Agricultural Experience
14
作者 Kikuo Eguchi Seigo Koura +1 位作者 Nao Eguchi Akihiko Kondou 《Open Journal of Therapy and Rehabilitation》 2024年第3期236-244,共9页
Background: Harvesting activities have proven effective in reducing stress in patients with dementia. At a psychiatric hospital, occupational therapists (OT) made patients with dementia perform vegetable harvesting ac... Background: Harvesting activities have proven effective in reducing stress in patients with dementia. At a psychiatric hospital, occupational therapists (OT) made patients with dementia perform vegetable harvesting activities as a part of their treatment. The patients became calmer and began to smile not only after but also before and during harvesting activity. Therefore, this study aimed to measure autonomic nervous system (ANS) responses over time in a female patient in her 80s with moderate Alzheimer’s disease (AD) who had experience in farming when performing harvesting activities. Additionally, this study aimed to consider factors associated with changes in ANS responses over time and to verify the physiological therapeutic effects of harvesting activities. Methods: An OT with more than 10 years of experience and a good relationship with the patient conducted one-on-one sessions with the patient. Harvesting activity was performed in a courtyard with trees. The patient harvested lettuce (three lettuce plants) grown in a planter while sitting on a chair. Additionally, the planter was set up on a desk. ANS responses were measured over time from before to after the activity for different events at six time periods. Changes in the patient’s ANS responses were assessed during each period. Results: With the involvement of environmental factors and OT during harvesting activities, parasympathetic nervous system (PNS) activity significantly increased. This may lead to improved mental stability. Conclusion: The findings of this study indicate that implementing harvesting activities may have a positive effect on the PNS in patients with AD with long-term agricultural experience. However, further studies with a larger sample size and multidimensional evaluations are needed. 展开更多
关键词 alzheimer’s disease Autonomic Nervous Response Harvesting Activity Therapeutic Effects
下载PDF
Research on the Application of Montessori Education Method in Cognitive Training of Patients with Alzheimer’s Disease
15
作者 Wei Wang Faridah Mohd Said 《Journal of Clinical and Nursing Research》 2024年第5期336-341,共6页
Objective:To study the application of the Montessori education method in cognitive training in patients with Alzheimer’s disease(AD).Methods:40 cases of senile dementia patients who were admitted to our hospital from... Objective:To study the application of the Montessori education method in cognitive training in patients with Alzheimer’s disease(AD).Methods:40 cases of senile dementia patients who were admitted to our hospital from January 2022 to January 2023 were selected and randomly divided into an intervention group and a control group according to the single and double number table method,with 20 cases in each group.The intervention group used the Montessori education method,the principle of which was to implement individualized health interventions based on the individual conditions of the patients,for a period of 6 months;the control group was given conventional treatment and nursing of the disease.The Mini-Mental State Examination(MMSE)was used to compare the effects of the two groups of patients before and after health intervention and conduct statistical analysis.Results:The score of the intervention group was higher than that of the control group,and there was a statistical difference between the two(P<0.05).Conclusion:Implementing the Montessori education method for diagnosed Alzheimer’s patients can effectively improve their cognitive function and delay the progress of further dementia. 展开更多
关键词 Montessori education method alzheimer’s disease Cognitive training
下载PDF
Multimodal comparison of plasma proteins associated with blood-brain barrier impairment in Alzheimer’s disease
16
作者 Elisa Giunti Roberto Collu +3 位作者 Joel Reisman Jong Soo Lee Noureddine Melikechi Weiming Xia 《Aging Communications》 2024年第1期1-9,共9页
Background:Vascular impairment is one of the major contributors to dementia.We aimed to identify blood biomarkers suggestive of potential impairment of the blood-brain barrier(BBB)in subjects with Alzheimer’s disease... Background:Vascular impairment is one of the major contributors to dementia.We aimed to identify blood biomarkers suggestive of potential impairment of the blood-brain barrier(BBB)in subjects with Alzheimer’s disease(AD).Methods:We used administrative data from the VA Informatics and Computing Infrastructure Resource Center to study both inpatients and outpatients with AD.Plasma samples from healthy control and AD individuals were analyzed using enzyme-linked immunosorbent assay and proteomics approaches to identify differentially expressed proteins.Bioinformatic analysis was applied to explore significantly enriched pathways.Results:In the same cohort of patients with AD,we found twice number of subjects with cerebral amyloid angiopathy in the two-year period after the onset of AD,compared to the number of subjects with cerebral amyloid angiopathy in the two-year period prior to AD onset.Different pathways related to BBB,like cell adhesion,extracellular matrix organization and Wnt signaling,were activated and differentially expressed proteins such as ADAM22,PDGFR-α,DKK-4,Neucrin and RSOP-1 were identified.Moreover,matrix metalloproteinase-9,which is implicated in causing degradation of basal lamina and BBB disruption,was significantly increased in the plasma of AD patients.Conclusions:Alteration of proteins found in AD subjects could provide new insights into biomarkers regulating permeability and BBB integrity. 展开更多
关键词 alzheimer’s disease blood-brain barrier peripheral biomarkers matrix metalloproteinases cerebral amyloid angiopathy
下载PDF
Targeting tau in Alzheimer's disease:from mechanisms to clinical therapy 被引量:6
17
作者 Jinwang Ye Huali Wan +1 位作者 Sihua Chen Gong-Ping Liu 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第7期1489-1498,共10页
Alzheimer’s disease is the most prevalent neurodegenerative disease affecting older adults.Primary features of Alzheimer’s disease include extra cellular aggregation of amyloid-βplaques and the accumulation of neur... Alzheimer’s disease is the most prevalent neurodegenerative disease affecting older adults.Primary features of Alzheimer’s disease include extra cellular aggregation of amyloid-βplaques and the accumulation of neurofibrillary tangles,fo rmed by tau protein,in the cells.While there are amyloid-β-ta rgeting therapies for the treatment of Alzheimer’s disease,these therapies are costly and exhibit potential negative side effects.Mounting evidence suggests significant involvement of tau protein in Alzheimer’s disease-related neurodegeneration.As an important microtubule-associated protein,tau plays an important role in maintaining the stability of neuronal microtubules and promoting axonal growth.In fact,clinical studies have shown that abnormal phosphorylation of tau protein occurs before accumulation of amyloid-βin the brain.Various therapeutic strategies targeting tau protein have begun to emerge,and are considered possible methods to prevent and treat Alzheimer’s disease.Specifically,abnormalities in post-translational modifications of the tau protein,including aberrant phosphorylation,ubiquitination,small ubiquitin-like modifier(SUMO)ylation,acetylation,and truncation,contribute to its microtubule dissociation,misfolding,and subcellular missorting.This causes mitochondrial damage,synaptic impairments,gliosis,and neuroinflammation,eventually leading to neurodegeneration and cognitive deficits.This review summarizes the recent findings on the underlying mechanisms of tau protein in the onset and progression of Alzheimer’s disease and discusses tau-targeted treatment of Alzheimer’s disease. 展开更多
关键词 ACETYLATION alzheimer’s disease cognitive deficits GLIOSIS mitochondria damage NEUROINFLAMMATION phosphorylation synaptic impairments TAU tau immunotherapy
下载PDF
Neural stem cells promote neuroplasticity: a promising therapeutic strategy for the treatment of Alzheimer’s disease 被引量:3
18
作者 Jun Chang Yujiao Li +4 位作者 Xiaoqian Shan Xi Chen Xuhe Yan Jianwei Liu Lan Zhao 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第3期619-628,共10页
Recent studies have demonstrated that neuroplasticity,such as synaptic plasticity and neurogenesis,exists throughout the normal lifespan but declines with age and is significantly impaired in individuals with Alzheime... Recent studies have demonstrated that neuroplasticity,such as synaptic plasticity and neurogenesis,exists throughout the normal lifespan but declines with age and is significantly impaired in individuals with Alzheimer’s disease.Hence,promoting neuroplasticity may represent an effective strategy with which Alzheimer’s disease can be alleviated.Due to their significant ability to self-renew,differentiate,and migrate,neural stem cells play an essential role in reversing synaptic and neuronal damage,reducing the pathology of Alzheimer’s disease,including amyloid-β,tau protein,and neuroinflammation,and secreting neurotrophic factors and growth factors that are related to plasticity.These events can promote synaptic plasticity and neurogenesis to repair the microenvironment of the mammalian brain.Consequently,neural stem cells are considered to represent a potential regenerative therapy with which to improve Alzheimer’s disease and other neurodegenerative diseases.In this review,we discuss how neural stem cells regulate neuroplasticity and optimize their effects to enhance their potential for treating Alzheimer’s disease in the clinic. 展开更多
关键词 alzheimer’s disease amyloid-β cell therapy extracellular vesicle neural stem cell synaptic plasticity tau
下载PDF
Ferroptosis mechanism and Alzheimer's disease 被引量:7
19
作者 Lina Feng Jingyi Sun +6 位作者 Ling Xia Qiang Shi Yajun Hou Lili Zhang Mingquan Li Cundong Fan Baoliang Sun 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第8期1741-1750,共10页
Regulated cell death is a genetically determined form of programmed cell death that commonly occurs during the development of living organisms.This process plays a crucial role in modulating homeostasis and is evoluti... Regulated cell death is a genetically determined form of programmed cell death that commonly occurs during the development of living organisms.This process plays a crucial role in modulating homeostasis and is evolutionarily conserved across a diverse range of living organisms.Ferroptosis is a classic regulatory mode of cell death.Extensive studies of regulatory cell death in Alzheimer’s disease have yielded increasing evidence that fe rroptosis is closely related to the occurrence,development,and prognosis of Alzheimer’s disease.This review summarizes the molecular mechanisms of ferroptosis and recent research advances in the role of ferro ptosis in Alzheimer’s disease.Our findings are expected to serve as a theoretical and experimental foundation for clinical research and targeted therapy for Alzheimer’s disease. 展开更多
关键词 alzheimer’s disease apolipoprotein E Fe^(2+) ferroptosis glial cell glutathione peroxidase 4 imbalance in iron homeostasis lipid peroxidation regulated cell death system Xc^(-)
下载PDF
NLRP3/1-mediated pyroptosis:beneficial clues for the development of novel therapies for Alzheimer’s disease 被引量:2
20
作者 Bo Hu Jiaping Zhang +3 位作者 Jie Huang Bairu Luo Xiansi Zeng Jinjing Jia 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第11期2400-2410,共11页
The inflammasome is a multiprotein complex involved in innate immunity that mediates the inflammatory response leading to pyroptosis,which is a lytic,inflammatory form of cell death.There is accumulating evidence that... The inflammasome is a multiprotein complex involved in innate immunity that mediates the inflammatory response leading to pyroptosis,which is a lytic,inflammatory form of cell death.There is accumulating evidence that nucleotide-binding domain and leucine-rich repeat pyrin domain containing 3(NLRP3)inflammasome-mediated microglial pyroptosis and NLRP1 inflammasome-mediated neuronal pyroptosis in the brain are closely associated with the pathogenesis of Alzheimer’s disease.In this review,we summarize the possible pathogenic mechanisms of Alzheimer’s disease,focusing on neuroinflammation.We also describe the structures of NLRP3 and NLRP1 and the role their activation plays in Alzheimer’s disease.Finally,we examine the neuroprotective activity of small-molecule inhibitors,endogenous inhibitor proteins,microRNAs,and natural bioactive molecules that target NLRP3 and NLRP1,based on the rationale that inhibiting NLRP3 and NLRP1 inflammasome-mediated pyroptosis can be an effective therapeutic strategy for Alzheimer’s disease. 展开更多
关键词 alzheimer’s disease caspase-1 GSDMD INFLAMMASOME NEUROINFLAMMATION NLRP1 NLRP3 PYROPTOSIS therapeutic strategies
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部