Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by cognitive impairments in the initial stage, which lead to severe cognitive dysfunction in the later stage. Action observation therapy (AOT) is...Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by cognitive impairments in the initial stage, which lead to severe cognitive dysfunction in the later stage. Action observation therapy (AOT) is a multisensory cognitive rehabilitation technique where the patient initially observes the actions and then tries to perform. The study aimed to examine the impact of AOT along with usual physiotherapy interventions to reduce depression, improve cognition and balance of a patient with AD. A 67 years old patient with AD was selected for this study because the patient has been suffering from depression, dementia, and physical dysfunction along with some other health conditions like diabetes and hypertension. Before starting intervention, a baseline assessment was done through the Beck Depression Inventory (BDI) tool, the Mini-Cog Scale, and the Berg Balance Scale (BBS). The patient received 12 sessions of AOT along with usual physiotherapy interventions thrice a week for four weeks, which included 45 minutes of each session. After four weeks of intervention, the patient demonstrated significant improvement in depression, cognition, and balance, whereas the BDI score declined from moderate 21/63 to mild 15/63 level of depression. The Mini-Cog score improved from 2/5 to 4/5, and the BBS score increased from 18/56 to 37/56. It is concluded that AOT along with usual physiotherapy intervention helps to reduce depression, improve cognition and balance of people with AD.展开更多
Recent studies have demonstrated that neuroplasticity,such as synaptic plasticity and neurogenesis,exists throughout the normal lifespan but declines with age and is significantly impaired in individuals with Alzheime...Recent studies have demonstrated that neuroplasticity,such as synaptic plasticity and neurogenesis,exists throughout the normal lifespan but declines with age and is significantly impaired in individuals with Alzheimer’s disease.Hence,promoting neuroplasticity may represent an effective strategy with which Alzheimer’s disease can be alleviated.Due to their significant ability to self-renew,differentiate,and migrate,neural stem cells play an essential role in reversing synaptic and neuronal damage,reducing the pathology of Alzheimer’s disease,including amyloid-β,tau protein,and neuroinflammation,and secreting neurotrophic factors and growth factors that are related to plasticity.These events can promote synaptic plasticity and neurogenesis to repair the microenvironment of the mammalian brain.Consequently,neural stem cells are considered to represent a potential regenerative therapy with which to improve Alzheimer’s disease and other neurodegenerative diseases.In this review,we discuss how neural stem cells regulate neuroplasticity and optimize their effects to enhance their potential for treating Alzheimer’s disease in the clinic.展开更多
γ-Secretase,called“the proteasome of the membrane,”is a membrane-embedded protease complex that cleaves 150+peptide substrates with central roles in biology and medicine,including amyloid precursor protein and the ...γ-Secretase,called“the proteasome of the membrane,”is a membrane-embedded protease complex that cleaves 150+peptide substrates with central roles in biology and medicine,including amyloid precursor protein and the Notch family of cell-surface receptors.Mutations inγ-secretase and amyloid precursor protein lead to early-onset familial Alzheimer’s disease.γ-Secretase has thus served as a critical drug target for treating familial Alzheimer’s disease and the more common late-onset Alzheimer’s disease as well.However,critical gaps remain in understanding the mechanisms of processive proteolysis of substrates,the effects of familial Alzheimer’s disease mutations,and allosteric modulation of substrate cleavage byγ-secretase.In this review,we focus on recent studies of structural dynamic mechanisms ofγ-secretase.Different mechanisms,including the“Fit-Stay-Trim,”“Sliding-Unwinding,”and“Tilting-Unwinding,”have been proposed for substrate proteolysis of amyloid precursor protein byγ-secretase based on all-atom molecular dynamics simulations.While an incorrect registry of the Notch1 substrate was identified in the cryo-electron microscopy structure of Notch1-boundγ-secretase,molecular dynamics simulations on a resolved model of Notch1-boundγ-secretase that was reconstructed using the amyloid precursor protein-boundγ-secretase as a template successfully capturedγ-secretase activation for proper cleavages of both wildtype and mutant Notch,being consistent with biochemical experimental findings.The approach could be potentially applied to decipher the processing mechanisms of various substrates byγ-secretase.In addition,controversy over the effects of familial Alzheimer’s disease mutations,particularly the issue of whether they stabilize or destabilizeγ-secretase-substrate complexes,is discussed.Finally,an outlook is provided for future studies ofγ-secretase,including pathways of substrate binding and product release,effects of modulators on familial Alzheimer’s disease mutations of theγ-secretase-substrate complexes.Comprehensive understanding of the functional mechanisms ofγ-secretase will greatly facilitate the rational design of effective drug molecules for treating familial Alzheimer’s disease and perhaps Alzheimer’s disease in general.展开更多
Alzheimer’s disease is a common neurodegenerative disorder defined by decreased reasoning abilities,memory loss,and cognitive deterioration.The presence of the blood-brain barrier presents a major obstacle to the dev...Alzheimer’s disease is a common neurodegenerative disorder defined by decreased reasoning abilities,memory loss,and cognitive deterioration.The presence of the blood-brain barrier presents a major obstacle to the development of effective drug therapies for Alzheimer’s disease.The use of ultrasound as a novel physical modulation approach has garnered widespread attention in recent years.As a safe and feasible therapeutic and drug-delivery method,ultrasound has shown promise in improving cognitive deficits.This article provides a summary of the application of ultrasound technology for treating Alzheimer’s disease over the past 5 years,including standalone ultrasound treatment,ultrasound combined with microbubbles or drug therapy,and magnetic resonance imaging-guided focused ultrasound therapy.Emphasis is placed on the benefits of introducing these treatment methods and their potential mechanisms.We found that several ultrasound methods can open the blood-brain barrier and effectively alleviate amyloid-βplaque deposition.We believe that ultrasound is an effective therapy for Alzheimer’s disease,and this review provides a theoretical basis for future ultrasound treatment methods.展开更多
Alzheimer’s disease (AD) is caused by synaptic failure and the excessive accumulation of misfolded proteins especially Aβ and tau, and associated with memory loss and cognitive impairment. Treatment of AD mainly con...Alzheimer’s disease (AD) is caused by synaptic failure and the excessive accumulation of misfolded proteins especially Aβ and tau, and associated with memory loss and cognitive impairment. Treatment of AD mainly consists of symptomatic therapy and disease-modifying therapy (DMT). Several monotherapies including small molecules or antibodies have been evaluated through multiple clinical trials, but a very few have been approved by the USFDA to intervene the disease’s pathogenesis. Past research has shown multifactorial nature of AD, therefore, multi-target drugs were proposed to target different pathways at the same time, however, currently no rationally designed multi-target directed ligand (MTDL) has been clinically approved. Different combinations and bispecific antibodies are also under development. Novel approaches like stem cell-based therapies, microRNAs, peptides, ADCs and vaccines cast a new hope for AD treatment, however, a number of questions remained to be answered prior to their safe and effective clinical translation. This review explores the small molecules, MTDL, and antibodies (monospecific and bispecific) for the treatment of AD. Finally, future perspectives (stem cell therapy, PROTAC approaches, microRNAs, ADC, peptides and vaccines) are also discussed with regard to their clinical applications and feasibility.展开更多
Toxic aggregated amyloid-βaccumulation is a key pathogenic event in Alzheimer’s disease.Treatment approaches have focused on the suppression,deferral,or dispersion of amyloid-βfibers and plaques.Gene therapy has ev...Toxic aggregated amyloid-βaccumulation is a key pathogenic event in Alzheimer’s disease.Treatment approaches have focused on the suppression,deferral,or dispersion of amyloid-βfibers and plaques.Gene therapy has evolved as a potential therapeutic option for treating Alzheimer’s disease,owing to its rapid advancement over the recent decade.Small interfering ribonucleic acid has recently garnered considerable attention in gene therapy owing to its ability to down-regulate genes with high sequence specificity and an almost limitless number of therapeutic targets,including those that were once considered undruggable.However,lackluster cellular uptake and the destabilization of small interfering ribonucleic acid in its biological environment restrict its therapeutic application,necessitating the development of a vector that can safeguard the genetic material from early destruction within the bloodstream while effectively delivering therapeutic genes across the bloodbrain barrier.Nanotechnology has emerged as a possible solution,and several delivery systems utilizing nanoparticles have been shown to bypass key challenges regarding small interfering ribonucleic acid delivery.By reducing the enzymatic breakdown of genetic components,nanomaterials as gene carriers have considerably enhanced the efficiency of gene therapy.Liposomes,polymeric nanoparticles,magnetic nanoparticles,dendrimers,and micelles are examples of nanocarriers that have been designed,and each has its own set of features.Furthermore,recent advances in the specific delivery of neurotrophic compounds via gene therapy have provided promising results in relation to augmenting cognitive abilities.In this paper,we highlight the use of different nanocarriers in targeted gene delivery and small interfering ribonucleic acid-mediated gene silencing as a potential platform for treating Alzheimer’s disease.展开更多
Alzheimer’s disease(AD)is a degenerative neurological disease that primarily affects the elderly.Drug therapy is the main strategy for AD treatment,but current treatments suffer from poor efficacy and a number of sid...Alzheimer’s disease(AD)is a degenerative neurological disease that primarily affects the elderly.Drug therapy is the main strategy for AD treatment,but current treatments suffer from poor efficacy and a number of side effects.Non-drug therapy is attracting more attention and may be a better strategy for treatment of AD.Hypoxia is one of the important factors that contribute to the pathogenesis of AD.Multiple cellular processes synergistically promote hypoxia,including aging,hypertension,diabetes,hypoxia/obstructive sleep apnea,obesity,and traumatic brain injury.Increasing evidence has shown that hypoxia may affect multiple pathological aspects of AD,such as amyloid-beta metabolism,tau phosphorylation,autophagy,neuroinflammation,oxidative stress,endoplasmic reticulum stress,and mitochondrial and synaptic dysfunction.Treatments targeting hypoxia may delay or mitigate the progression of AD.Numerous studies have shown that oxygen therapy could improve the risk factors and clinical symptoms of AD.Increasing evidence also suggests that oxygen therapy may improve many pathological aspects of AD including amyloid-beta metabolism,tau phosphorylation,neuroinflammation,neuronal apoptosis,oxidative stress,neurotrophic factors,mitochondrial function,cerebral blood volume,and protein synthesis.In this review,we summarized the effects of oxygen therapy on AD pathogenesis and the mechanisms underlying these alterations.We expect that this review can benefit future clinical applications and therapy strategies on oxygen therapy for AD.展开更多
OBJECTIVE To explore the new indications and key mechanism of Bazi Bushen capsule(BZBS)by network pharmacology and in vitro experiment.METHODS The potential tar⁃get profiles of the components of BZBS were pre⁃dicted.S...OBJECTIVE To explore the new indications and key mechanism of Bazi Bushen capsule(BZBS)by network pharmacology and in vitro experiment.METHODS The potential tar⁃get profiles of the components of BZBS were pre⁃dicted.Subsequently,new indications for BZBS were predicted by disease ontology(DO)enrich⁃ment analysis and initially validated by GO and KEGG pathway enrichment analysis.Further⁃more,the therapeutic target of BZBS acting on AD signaling pathway were identified by intersec⁃tion analysis.Two Alzheimer′s disease(AD)cell models,BV-2 and SH-SY5Y,were used to pre⁃liminarily verify the anti-AD efficacy and mecha⁃nism of BZBS in vitro.RESULTS In total,1499 non-repeated ingredients were obtained from 16 herbs in BZBS formula,and 1320 BZBS targets with high confidence were predicted.Disease enrichment results strongly suggested that BZBS formula has the potential to be used in the treat⁃ment of AD.In vitro experiments showed that BZ⁃BS could significantly reduce the release of TNF-αand IL-6 and the expression of COX-2 and PSEN1 in Aβ25-35-induced BV-2 cells.BZBS reduced the apoptosis rate of Aβ25-35 induced SH-SY5Y cells,significantly increased mitochon⁃drial membrane potential,reduced the expres⁃sion of Caspase3 active fragment and PSEN1,and increased the expression of IDE.CONCLU⁃SIONS BZBS formula has a potential use in the treatment of AD,which is achieved through regu⁃lation of ERK1/2,NF-κB signaling pathways,and GSK-3β/β-catenin signaling pathway.Further⁃more,the network pharmacology technology is a feasible drug repurposing strategy to reposition new clinical use of approved TCM and explore the mechanism of action.The study lays a foun⁃dation for the subsequent in-depth study of BZBS in the treatment of AD and provides a basis for its application in the clinical treatment of AD.展开更多
Over the past three decades, genomic and epigenetic sciences have identified more than 70 genes involved in the molecular pathophysiology of Alzheimer’s disease (AD). DNA methylation, abnormal histone and chromatin r...Over the past three decades, genomic and epigenetic sciences have identified more than 70 genes involved in the molecular pathophysiology of Alzheimer’s disease (AD). DNA methylation, abnormal histone and chromatin regulation and the action of various miRNAs induce AD. The identification of mutated genes has paved the way for the development of diagnostic kits and the initiation of gene therapy trials. However, despite major advances in neuroscience research, there is yet no suitable treatment for AD. Therefore, the early diagnosis of this neurodegenerative disease raises several ethical questions, including the balance between the principle of non-maleficence and the principle of beneficence. The aims of this research were to present the genomic and ethical aspects of AD, and to highlight the ethical principles involved in its presymptomatic diagnosis and therapy. A systematic review of the literature in PubMed, Google Scholar and Science Direct was carried out to outline the genomic aspects and ethical principles relating not only to the presymptomatic diagnosis of AD, but also to its gene therapy. A total of 16 publications were selected. AD is a multifactorial disease that can be genetically classified into Sporadic Alzheimer’s Disease and Familial Alzheimer’s Disease based on family history. Gene therapy targeting specific disease-causing genes is a promising therapeutic strategy. Advancements in artificial intelligence applications may enable the prediction of AD onset several years in advance. While early diagnosis of AD may empower patients with full decision competence for early decision-making, it also carries implications for the patient’s family members, who are at risk of developing the disease, potentially becoming a source of confusion or anxiety. AD has a significant impact on the life of individuals at risk and their families. Given the absence of disease modifying therapy, genetic screening and early diagnosis for this condition raise ethical issues that must be carefully considered in the context of fundamental bioethical principles, including autonomy, beneficence, non-maleficence, and justice.展开更多
Alzheimer’s disease(AD)is a chronic neurodegenerative disease that mainly causes dementia.It is a serious threat to the health of the global elderly population.Considerable money and effort has been invested in the d...Alzheimer’s disease(AD)is a chronic neurodegenerative disease that mainly causes dementia.It is a serious threat to the health of the global elderly population.Considerable money and effort has been invested in the development of drug therapy for AD worldwide.Many drug therapies are currently under development or in clinical trials,based on two known mechanisms of AD,namely,Aβtoxicity and the abnormal Tau hyperphosphorylation.Numerous drugs are also being developed for other AD associated mechanisms such as neuroinflammation,neurotransmitter imbalance,oxidative damage and mitochondrial dysfunction,neuron loss and degeneration.Even so,the number of drugs that can successfully improve symptoms or delay the progression of the disease remains very limited.However,multi-drug combinations may provide a new avenue for drug therapy for AD.In addition,early diagnosis of AD and timely initiation of treatment may allow drugs that act on the early pathological processes of AD to help improve the symptoms and prevent the progression of the condition.展开更多
Alzheimer’s disease is a progressive and fatal neurodegenerative disorder that starts many years before the onset of cognitive symptoms.Identifying novel biomarkers for Alzheimer’s disease has the potential for pati...Alzheimer’s disease is a progressive and fatal neurodegenerative disorder that starts many years before the onset of cognitive symptoms.Identifying novel biomarkers for Alzheimer’s disease has the potential for patient risk stratification,early diagnosis,and disease monitoring in response to therapy.A novel class of biomarkers is extracellular vesicles given their sensitivity and specificity to specific diseases.In addition,extracellular vesicles can be used as novel biological therapeutics given their ability to efficiently and functionally deliver therapeutic cargo.This is critical given the huge unmet need for novel treatment strategies for Alzheimer’s disease.This review summarizes and discusses the most recent findings in this field.展开更多
Alzheimer’s disease(AD) is an age-related neurodegenerative disease characterized by progressive cognitive defects. The role of the central immune system dominated by microglia in the progression of AD has been exten...Alzheimer’s disease(AD) is an age-related neurodegenerative disease characterized by progressive cognitive defects. The role of the central immune system dominated by microglia in the progression of AD has been extensively investigated. However, little is known about the peripheral immune system in AD pathogenesis.Recently, with the discovery of the meningeal lymphatic vessels and glymphatic system, the roles of the acquired immunity in the maintenance of central homeostasis and neurodegenerative diseases have attracted an increasing attention. The T cells not only regulate the function of neurons, astrocytes, microglia, oligodendrocytes and brain microvascular endothelial cells, but also participate in the clearance of β-amyloid(Aβ) plaques. Apart from producing antibodies to bind Aβ peptides, the B cells affect Aβ-related cascades via a variety of antibodyindependent mechanisms. This review systemically summarizes the recent progress in understanding pathophysiological roles of the T cells and B cells in AD.展开更多
Background:The current prevalence of Alzheimer’s disease(AD)in the elderly has risen from 1%at 65 to 40%to 50%at 95,and the overall proportion is rising.Emerging evidence suggests that ros-driven oxidative stress is ...Background:The current prevalence of Alzheimer’s disease(AD)in the elderly has risen from 1%at 65 to 40%to 50%at 95,and the overall proportion is rising.Emerging evidence suggests that ros-driven oxidative stress is a crucial mediator of the aging process.Thus,in recent years,oxidative damage and inflammation have become targets for exploring pharmacological strategies for treating age-related diseases.Methods:In C57BL/6J mice,to determine whether the mechanism of action of cerebralcare granule®(CG)combined with donepezil(Don)treatment is better than dementia alone,we constructed a mouse model and treated it with CG in combination with Don.Results:A combination of Don and CG significantly reduces the damage caused by lipid peroxidation in the hippocampus of AD mice,reduces oxidative damage,and reduces inflammation,increases the activity of antioxidant enzymes,which is finally manifested as the improvement effect on the learning and memory impairment of AD mice.Conclusion:CG combined with Don has a better effect on improving cognitive and behavioral deficits caused by D-galactose in AD mice than Don alone.The mechanism may be related to reducing inflammation via the NF-κB pathway,resisting oxidative damage and increasing acetylcholine levels.展开更多
Alzheimer’s disease is a common progressive neurodegenerative disorder, pathologically characterized by the presence of β-amyloid plaques and neurofibrillary tangles. Current treatment approaches using drugs only al...Alzheimer’s disease is a common progressive neurodegenerative disorder, pathologically characterized by the presence of β-amyloid plaques and neurofibrillary tangles. Current treatment approaches using drugs only alleviate the symptoms without curing the disease, which is a serious issue and influences the quality of life of the patients and their caregivers. In recent years, stem cell technology has provided new insights into the treatment of neurodegenerative diseases, including Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis. Currently, the main sources of stem cells include neural stem cells, embryonic stem cells, mesenchymal stem cells, and induced pluripotent stem cells. In this review, we discuss the pathophysiology and general treatment of Alzheimer’s disease, and the current state of stem cell transplantation in the treatment of Alzheimer’s disease. We also assess future challenges in the clinical application and drug development of stem cell transplantation as a treatment for Alzheimer’s disease.展开更多
Alzheimer’s disease is a neurodegenerative condition leading to atrophy of the brain and robbing nearly 5.8 million individuals in the United States age 65 and older of their cognitive functions.Alzheimer’s disease ...Alzheimer’s disease is a neurodegenerative condition leading to atrophy of the brain and robbing nearly 5.8 million individuals in the United States age 65 and older of their cognitive functions.Alzheimer’s disease is associated with dementia and a progressive decline in memory,thinking,and social skills,eventually leading to a point that the individual can no longer perform daily activities independently.Currently available drugs on the market temporarily alleviate the symptoms,however,they are not successful in slowing down the progression of Alzheimer’s disease.Treatment and cures have been constricted due to the difficulty of drug delivery to the blood-brain barrier.Several studies have led to identification of vesicles to transport the necessary drugs through the blood-brain barrier that would typically not achieve the targeted area through systemic delivered medications.Recently,liposomes have emerged as a viable drug delivery agent to transport drugs that are not able to cross the blood-brain barrier.Liposomes are being used as a component of nanoparticle drug delivery;due to their biocompatible nature;and possessing the capability to carry both lipophilic and hydrophilic therapeutic agents across the blood brain barrier into the brain cells.Studies indicate the importance of liposomal based drug delivery in treatment of neurodegenerative disorders.The idea is to encapsulate the drugs inside the properly engineered liposome to generate a response of treatment.Liposomes are engineered to target specific diseased moieties and also several surface modifications of liposomes are under research to create a clinical path to the management of Alzheimer’s disease.This review deals with Alzheimer’s disease and emphasize on challenges associated with drug delivery to the brain,and how liposomal drug delivery can play an important role as a drug delivery method for the treatment of Alzheimer’s disease.This review also sheds some light on variation of liposomes.Additionally,it emphasizes on the liposomal formulations which are currently researched or used for treatment of Alzheimer’s disease and also discusses the future prospect of liposomal based drug delivery in Alzheimer’s disease.展开更多
Hyperbaric oxygen therapy as a new treatment approach for Alzheimer’s disease(AD):Alongside the increase in life expectancy,the prevalence of age-related disorders,such as neurodegenerative diseases,is on the rise...Hyperbaric oxygen therapy as a new treatment approach for Alzheimer’s disease(AD):Alongside the increase in life expectancy,the prevalence of age-related disorders,such as neurodegenerative diseases,is on the rise.For example,AD,the most common form of dementia in the elderly,accounts for 60–80%of all dementia cases.展开更多
Background: Although Alzheimer’s disease (AD) has been intensively investigated for many years, the effective treatments are largely missing. Commonly used conventional therapy, such as cholinesterase inhibitors (ChE...Background: Although Alzheimer’s disease (AD) has been intensively investigated for many years, the effective treatments are largely missing. Commonly used conventional therapy, such as cholinesterase inhibitors (ChEI) and N-methyl D-asparate receptor antagonist, have been generally considered as having symptom-relieving rather than disease-modifying effects. Thus, how to improve cognitive function beyond such effect & time limitations has become a serious challenge. Aim: In order to solve this challenge, a sequential therapy with the integration of conventional therapy and herbal therapy was applied to AD patients. Careful clinical observation was conducted in our outpatient setting. Case Presentation: A case of probable AD received the sequential therapy has achieved relative stable cognition and overall status in eight years. Conclusion: During the treatment of this AD case in eight years, sequential therapy showed great potential in stabilizing and improving cognition and overall status. Well designed preclinical and clinical studies are needed to investigate the efficacy of sequential therapy for AD and other type of dementia.展开更多
Extracellularβ-amyloid(Aβ)plaques and neurofibrillary tangles(NFTs)are the pathological hallmarks of Alzheimer’s disease(AD).Studies have shown that aggregates of extracellular Aβcan induce neuroinflammation media...Extracellularβ-amyloid(Aβ)plaques and neurofibrillary tangles(NFTs)are the pathological hallmarks of Alzheimer’s disease(AD).Studies have shown that aggregates of extracellular Aβcan induce neuroinflammation mediated neurotoxic signaling through microglial activation and release of pro-inflammatory factors.Thus,modulation of Aβmight be a potential therapeutic strategy for modifying disease progression.Recently,a large number of reports have confirmed the beneficial effects of mesenchymal stem cells(MSCs)on AD.It is believed to reduce neuroinflammation,reduce Aβamyloid deposits and NFTs,increase acetylcholine levels,promote neurogenesis,reduce neuronal damage,and improve working memory and cognition.In this review,we focus on the role of MSCs in clearing Aβdeposition.MSCs have the potential to modulate Aβ-related microenvironments via enhancement of autophagy,proteolysis of Aβaggregates,phagocytic clearance of Aβby microglial M2 polarization,decrease oxidative stress(OS),and correction of abnormal sphingolipid(SL)metabolism.With advantages in clinical applications,these data suggest that the use of MSCs as a multi-target modulator of Aβwould be an effective therapeutic approach in AD.展开更多
Alzheimer's disease(AD):AD,a neurodegenerative disorder and a significant cause of dementia throughout the world mostly affects the older adults but sometimes also seen in young age(early state AD)(Agrawal et a...Alzheimer's disease(AD):AD,a neurodegenerative disorder and a significant cause of dementia throughout the world mostly affects the older adults but sometimes also seen in young age(early state AD)(Agrawal et al.,2017).展开更多
Alzheimer’s disease is the most common form of dementia, affecting nearly 9.9 million new people every year. The disease provokes important memory and cognitive impairment, eventually causing individuals to forget th...Alzheimer’s disease is the most common form of dementia, affecting nearly 9.9 million new people every year. The disease provokes important memory and cognitive impairment, eventually causing individuals to forget their loved ones and rendering them completely dependent on their caretakers. Alzheimer’s patients typically experience more negative emotions, such as frustration and apathy, than healthy older adults. There is currently no cure for the disease. Our research group explores how the integration of virtual reality (VR) and an EEG-based intelligent agent in music therapy can alleviate psychological and cognitive symptoms of the disease. We propose a theory explaining how, through activation of the brain reward system, music can reduce negative emotions, increase positive emotions and as a result increase performance on cognitive tasks. The results of our experimental study concord with our theory: emotional states of participants are improved, as per recorded through EEG, and performances on memory tasks show improvement following the intervention. We believe that the combination of EEG brain assessment, VR and music therapy is a promising method for emotional states and cognitive symptoms of Alzheimer’s disease.展开更多
文摘Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by cognitive impairments in the initial stage, which lead to severe cognitive dysfunction in the later stage. Action observation therapy (AOT) is a multisensory cognitive rehabilitation technique where the patient initially observes the actions and then tries to perform. The study aimed to examine the impact of AOT along with usual physiotherapy interventions to reduce depression, improve cognition and balance of a patient with AD. A 67 years old patient with AD was selected for this study because the patient has been suffering from depression, dementia, and physical dysfunction along with some other health conditions like diabetes and hypertension. Before starting intervention, a baseline assessment was done through the Beck Depression Inventory (BDI) tool, the Mini-Cog Scale, and the Berg Balance Scale (BBS). The patient received 12 sessions of AOT along with usual physiotherapy interventions thrice a week for four weeks, which included 45 minutes of each session. After four weeks of intervention, the patient demonstrated significant improvement in depression, cognition, and balance, whereas the BDI score declined from moderate 21/63 to mild 15/63 level of depression. The Mini-Cog score improved from 2/5 to 4/5, and the BBS score increased from 18/56 to 37/56. It is concluded that AOT along with usual physiotherapy intervention helps to reduce depression, improve cognition and balance of people with AD.
基金supported by the National Natural Science Foundation of China,No.82074533(to LZ).
文摘Recent studies have demonstrated that neuroplasticity,such as synaptic plasticity and neurogenesis,exists throughout the normal lifespan but declines with age and is significantly impaired in individuals with Alzheimer’s disease.Hence,promoting neuroplasticity may represent an effective strategy with which Alzheimer’s disease can be alleviated.Due to their significant ability to self-renew,differentiate,and migrate,neural stem cells play an essential role in reversing synaptic and neuronal damage,reducing the pathology of Alzheimer’s disease,including amyloid-β,tau protein,and neuroinflammation,and secreting neurotrophic factors and growth factors that are related to plasticity.These events can promote synaptic plasticity and neurogenesis to repair the microenvironment of the mammalian brain.Consequently,neural stem cells are considered to represent a potential regenerative therapy with which to improve Alzheimer’s disease and other neurodegenerative diseases.In this review,we discuss how neural stem cells regulate neuroplasticity and optimize their effects to enhance their potential for treating Alzheimer’s disease in the clinic.
基金supported in part by Award 2121063 from National Science Foundation(to YM)AG66986 from the National Institutes of Health(to MSW).
文摘γ-Secretase,called“the proteasome of the membrane,”is a membrane-embedded protease complex that cleaves 150+peptide substrates with central roles in biology and medicine,including amyloid precursor protein and the Notch family of cell-surface receptors.Mutations inγ-secretase and amyloid precursor protein lead to early-onset familial Alzheimer’s disease.γ-Secretase has thus served as a critical drug target for treating familial Alzheimer’s disease and the more common late-onset Alzheimer’s disease as well.However,critical gaps remain in understanding the mechanisms of processive proteolysis of substrates,the effects of familial Alzheimer’s disease mutations,and allosteric modulation of substrate cleavage byγ-secretase.In this review,we focus on recent studies of structural dynamic mechanisms ofγ-secretase.Different mechanisms,including the“Fit-Stay-Trim,”“Sliding-Unwinding,”and“Tilting-Unwinding,”have been proposed for substrate proteolysis of amyloid precursor protein byγ-secretase based on all-atom molecular dynamics simulations.While an incorrect registry of the Notch1 substrate was identified in the cryo-electron microscopy structure of Notch1-boundγ-secretase,molecular dynamics simulations on a resolved model of Notch1-boundγ-secretase that was reconstructed using the amyloid precursor protein-boundγ-secretase as a template successfully capturedγ-secretase activation for proper cleavages of both wildtype and mutant Notch,being consistent with biochemical experimental findings.The approach could be potentially applied to decipher the processing mechanisms of various substrates byγ-secretase.In addition,controversy over the effects of familial Alzheimer’s disease mutations,particularly the issue of whether they stabilize or destabilizeγ-secretase-substrate complexes,is discussed.Finally,an outlook is provided for future studies ofγ-secretase,including pathways of substrate binding and product release,effects of modulators on familial Alzheimer’s disease mutations of theγ-secretase-substrate complexes.Comprehensive understanding of the functional mechanisms ofγ-secretase will greatly facilitate the rational design of effective drug molecules for treating familial Alzheimer’s disease and perhaps Alzheimer’s disease in general.
基金supported by the National Natural Science Foundation of China,Nos.82371886(to JY),81925020(to DM),82202797(to LW),and 82271218(to CZ).
文摘Alzheimer’s disease is a common neurodegenerative disorder defined by decreased reasoning abilities,memory loss,and cognitive deterioration.The presence of the blood-brain barrier presents a major obstacle to the development of effective drug therapies for Alzheimer’s disease.The use of ultrasound as a novel physical modulation approach has garnered widespread attention in recent years.As a safe and feasible therapeutic and drug-delivery method,ultrasound has shown promise in improving cognitive deficits.This article provides a summary of the application of ultrasound technology for treating Alzheimer’s disease over the past 5 years,including standalone ultrasound treatment,ultrasound combined with microbubbles or drug therapy,and magnetic resonance imaging-guided focused ultrasound therapy.Emphasis is placed on the benefits of introducing these treatment methods and their potential mechanisms.We found that several ultrasound methods can open the blood-brain barrier and effectively alleviate amyloid-βplaque deposition.We believe that ultrasound is an effective therapy for Alzheimer’s disease,and this review provides a theoretical basis for future ultrasound treatment methods.
文摘Alzheimer’s disease (AD) is caused by synaptic failure and the excessive accumulation of misfolded proteins especially Aβ and tau, and associated with memory loss and cognitive impairment. Treatment of AD mainly consists of symptomatic therapy and disease-modifying therapy (DMT). Several monotherapies including small molecules or antibodies have been evaluated through multiple clinical trials, but a very few have been approved by the USFDA to intervene the disease’s pathogenesis. Past research has shown multifactorial nature of AD, therefore, multi-target drugs were proposed to target different pathways at the same time, however, currently no rationally designed multi-target directed ligand (MTDL) has been clinically approved. Different combinations and bispecific antibodies are also under development. Novel approaches like stem cell-based therapies, microRNAs, peptides, ADCs and vaccines cast a new hope for AD treatment, however, a number of questions remained to be answered prior to their safe and effective clinical translation. This review explores the small molecules, MTDL, and antibodies (monospecific and bispecific) for the treatment of AD. Finally, future perspectives (stem cell therapy, PROTAC approaches, microRNAs, ADC, peptides and vaccines) are also discussed with regard to their clinical applications and feasibility.
基金supported by the Intramural Research Program National Institute on Aginq,NIH。
文摘Toxic aggregated amyloid-βaccumulation is a key pathogenic event in Alzheimer’s disease.Treatment approaches have focused on the suppression,deferral,or dispersion of amyloid-βfibers and plaques.Gene therapy has evolved as a potential therapeutic option for treating Alzheimer’s disease,owing to its rapid advancement over the recent decade.Small interfering ribonucleic acid has recently garnered considerable attention in gene therapy owing to its ability to down-regulate genes with high sequence specificity and an almost limitless number of therapeutic targets,including those that were once considered undruggable.However,lackluster cellular uptake and the destabilization of small interfering ribonucleic acid in its biological environment restrict its therapeutic application,necessitating the development of a vector that can safeguard the genetic material from early destruction within the bloodstream while effectively delivering therapeutic genes across the bloodbrain barrier.Nanotechnology has emerged as a possible solution,and several delivery systems utilizing nanoparticles have been shown to bypass key challenges regarding small interfering ribonucleic acid delivery.By reducing the enzymatic breakdown of genetic components,nanomaterials as gene carriers have considerably enhanced the efficiency of gene therapy.Liposomes,polymeric nanoparticles,magnetic nanoparticles,dendrimers,and micelles are examples of nanocarriers that have been designed,and each has its own set of features.Furthermore,recent advances in the specific delivery of neurotrophic compounds via gene therapy have provided promising results in relation to augmenting cognitive abilities.In this paper,we highlight the use of different nanocarriers in targeted gene delivery and small interfering ribonucleic acid-mediated gene silencing as a potential platform for treating Alzheimer’s disease.
基金supported by the Key Research and Development Support Project of Chengdu Science and Technology Bureau, No. 2019-YF05-00655-SN (to WDL)the Key Project of the Medical Science Department, University of Electronic Science and Technology of China, No. ZYGX2020ZB035 (to WDL)
文摘Alzheimer’s disease(AD)is a degenerative neurological disease that primarily affects the elderly.Drug therapy is the main strategy for AD treatment,but current treatments suffer from poor efficacy and a number of side effects.Non-drug therapy is attracting more attention and may be a better strategy for treatment of AD.Hypoxia is one of the important factors that contribute to the pathogenesis of AD.Multiple cellular processes synergistically promote hypoxia,including aging,hypertension,diabetes,hypoxia/obstructive sleep apnea,obesity,and traumatic brain injury.Increasing evidence has shown that hypoxia may affect multiple pathological aspects of AD,such as amyloid-beta metabolism,tau phosphorylation,autophagy,neuroinflammation,oxidative stress,endoplasmic reticulum stress,and mitochondrial and synaptic dysfunction.Treatments targeting hypoxia may delay or mitigate the progression of AD.Numerous studies have shown that oxygen therapy could improve the risk factors and clinical symptoms of AD.Increasing evidence also suggests that oxygen therapy may improve many pathological aspects of AD including amyloid-beta metabolism,tau phosphorylation,neuroinflammation,neuronal apoptosis,oxidative stress,neurotrophic factors,mitochondrial function,cerebral blood volume,and protein synthesis.In this review,we summarized the effects of oxygen therapy on AD pathogenesis and the mechanisms underlying these alterations.We expect that this review can benefit future clinical applications and therapy strategies on oxygen therapy for AD.
基金Chinese Academy of Engi⁃neering Strategic Consulting Project(2022-XY-45)S&T Program of Hebei(22372502D)+1 种基金Scien⁃tific Research Project of Hebei Provincial Admin⁃istration of Traditional Chinese Medicine(023172)and Scientific Research Project of Hebei Provincial Administration of Traditional Chinese Medicine(2021273)。
文摘OBJECTIVE To explore the new indications and key mechanism of Bazi Bushen capsule(BZBS)by network pharmacology and in vitro experiment.METHODS The potential tar⁃get profiles of the components of BZBS were pre⁃dicted.Subsequently,new indications for BZBS were predicted by disease ontology(DO)enrich⁃ment analysis and initially validated by GO and KEGG pathway enrichment analysis.Further⁃more,the therapeutic target of BZBS acting on AD signaling pathway were identified by intersec⁃tion analysis.Two Alzheimer′s disease(AD)cell models,BV-2 and SH-SY5Y,were used to pre⁃liminarily verify the anti-AD efficacy and mecha⁃nism of BZBS in vitro.RESULTS In total,1499 non-repeated ingredients were obtained from 16 herbs in BZBS formula,and 1320 BZBS targets with high confidence were predicted.Disease enrichment results strongly suggested that BZBS formula has the potential to be used in the treat⁃ment of AD.In vitro experiments showed that BZ⁃BS could significantly reduce the release of TNF-αand IL-6 and the expression of COX-2 and PSEN1 in Aβ25-35-induced BV-2 cells.BZBS reduced the apoptosis rate of Aβ25-35 induced SH-SY5Y cells,significantly increased mitochon⁃drial membrane potential,reduced the expres⁃sion of Caspase3 active fragment and PSEN1,and increased the expression of IDE.CONCLU⁃SIONS BZBS formula has a potential use in the treatment of AD,which is achieved through regu⁃lation of ERK1/2,NF-κB signaling pathways,and GSK-3β/β-catenin signaling pathway.Further⁃more,the network pharmacology technology is a feasible drug repurposing strategy to reposition new clinical use of approved TCM and explore the mechanism of action.The study lays a foun⁃dation for the subsequent in-depth study of BZBS in the treatment of AD and provides a basis for its application in the clinical treatment of AD.
文摘Over the past three decades, genomic and epigenetic sciences have identified more than 70 genes involved in the molecular pathophysiology of Alzheimer’s disease (AD). DNA methylation, abnormal histone and chromatin regulation and the action of various miRNAs induce AD. The identification of mutated genes has paved the way for the development of diagnostic kits and the initiation of gene therapy trials. However, despite major advances in neuroscience research, there is yet no suitable treatment for AD. Therefore, the early diagnosis of this neurodegenerative disease raises several ethical questions, including the balance between the principle of non-maleficence and the principle of beneficence. The aims of this research were to present the genomic and ethical aspects of AD, and to highlight the ethical principles involved in its presymptomatic diagnosis and therapy. A systematic review of the literature in PubMed, Google Scholar and Science Direct was carried out to outline the genomic aspects and ethical principles relating not only to the presymptomatic diagnosis of AD, but also to its gene therapy. A total of 16 publications were selected. AD is a multifactorial disease that can be genetically classified into Sporadic Alzheimer’s Disease and Familial Alzheimer’s Disease based on family history. Gene therapy targeting specific disease-causing genes is a promising therapeutic strategy. Advancements in artificial intelligence applications may enable the prediction of AD onset several years in advance. While early diagnosis of AD may empower patients with full decision competence for early decision-making, it also carries implications for the patient’s family members, who are at risk of developing the disease, potentially becoming a source of confusion or anxiety. AD has a significant impact on the life of individuals at risk and their families. Given the absence of disease modifying therapy, genetic screening and early diagnosis for this condition raise ethical issues that must be carefully considered in the context of fundamental bioethical principles, including autonomy, beneficence, non-maleficence, and justice.
基金This study was supported by the Ministry of Science and Technology of China(No.2016YFC1305800)the National Natural Science Foundation of China(No.31771114 and No.31929002)+1 种基金the Innovative Research Groups of the National Natural Science Foundation of China(No.81721005)the Academic Frontier Youth Team Project to Xiao-chuan WANG from Huazhong University of Science and Technology。
文摘Alzheimer’s disease(AD)is a chronic neurodegenerative disease that mainly causes dementia.It is a serious threat to the health of the global elderly population.Considerable money and effort has been invested in the development of drug therapy for AD worldwide.Many drug therapies are currently under development or in clinical trials,based on two known mechanisms of AD,namely,Aβtoxicity and the abnormal Tau hyperphosphorylation.Numerous drugs are also being developed for other AD associated mechanisms such as neuroinflammation,neurotransmitter imbalance,oxidative damage and mitochondrial dysfunction,neuron loss and degeneration.Even so,the number of drugs that can successfully improve symptoms or delay the progression of the disease remains very limited.However,multi-drug combinations may provide a new avenue for drug therapy for AD.In addition,early diagnosis of AD and timely initiation of treatment may allow drugs that act on the early pathological processes of AD to help improve the symptoms and prevent the progression of the condition.
基金This work was supported by the Radiology Research Fund for Alzheimer’s Disease at Stanford University(to AST).
文摘Alzheimer’s disease is a progressive and fatal neurodegenerative disorder that starts many years before the onset of cognitive symptoms.Identifying novel biomarkers for Alzheimer’s disease has the potential for patient risk stratification,early diagnosis,and disease monitoring in response to therapy.A novel class of biomarkers is extracellular vesicles given their sensitivity and specificity to specific diseases.In addition,extracellular vesicles can be used as novel biological therapeutics given their ability to efficiently and functionally deliver therapeutic cargo.This is critical given the huge unmet need for novel treatment strategies for Alzheimer’s disease.This review summarizes and discusses the most recent findings in this field.
基金supported by grants from the National Natural Science Foundation of China (Grants No. 82071199 and 32100674)。
文摘Alzheimer’s disease(AD) is an age-related neurodegenerative disease characterized by progressive cognitive defects. The role of the central immune system dominated by microglia in the progression of AD has been extensively investigated. However, little is known about the peripheral immune system in AD pathogenesis.Recently, with the discovery of the meningeal lymphatic vessels and glymphatic system, the roles of the acquired immunity in the maintenance of central homeostasis and neurodegenerative diseases have attracted an increasing attention. The T cells not only regulate the function of neurons, astrocytes, microglia, oligodendrocytes and brain microvascular endothelial cells, but also participate in the clearance of β-amyloid(Aβ) plaques. Apart from producing antibodies to bind Aβ peptides, the B cells affect Aβ-related cascades via a variety of antibodyindependent mechanisms. This review systemically summarizes the recent progress in understanding pathophysiological roles of the T cells and B cells in AD.
基金supported by the Innovation Team and Talents Cultivation Program of the National Administration of Traditional Chinese Medicine[grant numbers ZYYCXTD-D-202005]the Key Project at Central Government Level[grant numbers 2060302]the Special Project for Transformation of Scientific and Technological Achievements in Qinghai Province[grant numbers 2021-SF-150].
文摘Background:The current prevalence of Alzheimer’s disease(AD)in the elderly has risen from 1%at 65 to 40%to 50%at 95,and the overall proportion is rising.Emerging evidence suggests that ros-driven oxidative stress is a crucial mediator of the aging process.Thus,in recent years,oxidative damage and inflammation have become targets for exploring pharmacological strategies for treating age-related diseases.Methods:In C57BL/6J mice,to determine whether the mechanism of action of cerebralcare granule®(CG)combined with donepezil(Don)treatment is better than dementia alone,we constructed a mouse model and treated it with CG in combination with Don.Results:A combination of Don and CG significantly reduces the damage caused by lipid peroxidation in the hippocampus of AD mice,reduces oxidative damage,and reduces inflammation,increases the activity of antioxidant enzymes,which is finally manifested as the improvement effect on the learning and memory impairment of AD mice.Conclusion:CG combined with Don has a better effect on improving cognitive and behavioral deficits caused by D-galactose in AD mice than Don alone.The mechanism may be related to reducing inflammation via the NF-κB pathway,resisting oxidative damage and increasing acetylcholine levels.
基金supported by the National Natural Science Foundation of China,No.81701076(to LLZ)and No.31670795(to XQF)2017 Changbai Mountain Research Support Foundation,No.440050117010(to XQF)+1 种基金Opening Project of Zhejiang Provincial Top Key Discipline of Pharmaceutical Sciences,No.YKFJ2-007(to LLZ)grants from the Science and Technology Department of Jilin Province,China,No.20190701037GH(to FQZ),20180520138JH(to FQZ),20190701036GH(to LLZ)
文摘Alzheimer’s disease is a common progressive neurodegenerative disorder, pathologically characterized by the presence of β-amyloid plaques and neurofibrillary tangles. Current treatment approaches using drugs only alleviate the symptoms without curing the disease, which is a serious issue and influences the quality of life of the patients and their caregivers. In recent years, stem cell technology has provided new insights into the treatment of neurodegenerative diseases, including Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis. Currently, the main sources of stem cells include neural stem cells, embryonic stem cells, mesenchymal stem cells, and induced pluripotent stem cells. In this review, we discuss the pathophysiology and general treatment of Alzheimer’s disease, and the current state of stem cell transplantation in the treatment of Alzheimer’s disease. We also assess future challenges in the clinical application and drug development of stem cell transplantation as a treatment for Alzheimer’s disease.
文摘Alzheimer’s disease is a neurodegenerative condition leading to atrophy of the brain and robbing nearly 5.8 million individuals in the United States age 65 and older of their cognitive functions.Alzheimer’s disease is associated with dementia and a progressive decline in memory,thinking,and social skills,eventually leading to a point that the individual can no longer perform daily activities independently.Currently available drugs on the market temporarily alleviate the symptoms,however,they are not successful in slowing down the progression of Alzheimer’s disease.Treatment and cures have been constricted due to the difficulty of drug delivery to the blood-brain barrier.Several studies have led to identification of vesicles to transport the necessary drugs through the blood-brain barrier that would typically not achieve the targeted area through systemic delivered medications.Recently,liposomes have emerged as a viable drug delivery agent to transport drugs that are not able to cross the blood-brain barrier.Liposomes are being used as a component of nanoparticle drug delivery;due to their biocompatible nature;and possessing the capability to carry both lipophilic and hydrophilic therapeutic agents across the blood brain barrier into the brain cells.Studies indicate the importance of liposomal based drug delivery in treatment of neurodegenerative disorders.The idea is to encapsulate the drugs inside the properly engineered liposome to generate a response of treatment.Liposomes are engineered to target specific diseased moieties and also several surface modifications of liposomes are under research to create a clinical path to the management of Alzheimer’s disease.This review deals with Alzheimer’s disease and emphasize on challenges associated with drug delivery to the brain,and how liposomal drug delivery can play an important role as a drug delivery method for the treatment of Alzheimer’s disease.This review also sheds some light on variation of liposomes.Additionally,it emphasizes on the liposomal formulations which are currently researched or used for treatment of Alzheimer’s disease and also discusses the future prospect of liposomal based drug delivery in Alzheimer’s disease.
基金supported in part by the Israeli Ministry of Science,Technology and Space to UA(Grant number 3-12069)
文摘Hyperbaric oxygen therapy as a new treatment approach for Alzheimer’s disease(AD):Alongside the increase in life expectancy,the prevalence of age-related disorders,such as neurodegenerative diseases,is on the rise.For example,AD,the most common form of dementia in the elderly,accounts for 60–80%of all dementia cases.
文摘Background: Although Alzheimer’s disease (AD) has been intensively investigated for many years, the effective treatments are largely missing. Commonly used conventional therapy, such as cholinesterase inhibitors (ChEI) and N-methyl D-asparate receptor antagonist, have been generally considered as having symptom-relieving rather than disease-modifying effects. Thus, how to improve cognitive function beyond such effect & time limitations has become a serious challenge. Aim: In order to solve this challenge, a sequential therapy with the integration of conventional therapy and herbal therapy was applied to AD patients. Careful clinical observation was conducted in our outpatient setting. Case Presentation: A case of probable AD received the sequential therapy has achieved relative stable cognition and overall status in eight years. Conclusion: During the treatment of this AD case in eight years, sequential therapy showed great potential in stabilizing and improving cognition and overall status. Well designed preclinical and clinical studies are needed to investigate the efficacy of sequential therapy for AD and other type of dementia.
基金supported by a grant from the National Science Foundation of China(No.82001326)Key R&D project of Shanxi Province(201803D31068)+1 种基金Applied Basic Research Project of Shanxi Province(201901D211319,201901D111384)Science and Technology Innovation Project of Colleges and Universities of Shanxi Province(2019L0445,2019L0418).
文摘Extracellularβ-amyloid(Aβ)plaques and neurofibrillary tangles(NFTs)are the pathological hallmarks of Alzheimer’s disease(AD).Studies have shown that aggregates of extracellular Aβcan induce neuroinflammation mediated neurotoxic signaling through microglial activation and release of pro-inflammatory factors.Thus,modulation of Aβmight be a potential therapeutic strategy for modifying disease progression.Recently,a large number of reports have confirmed the beneficial effects of mesenchymal stem cells(MSCs)on AD.It is believed to reduce neuroinflammation,reduce Aβamyloid deposits and NFTs,increase acetylcholine levels,promote neurogenesis,reduce neuronal damage,and improve working memory and cognition.In this review,we focus on the role of MSCs in clearing Aβdeposition.MSCs have the potential to modulate Aβ-related microenvironments via enhancement of autophagy,proteolysis of Aβaggregates,phagocytic clearance of Aβby microglial M2 polarization,decrease oxidative stress(OS),and correction of abnormal sphingolipid(SL)metabolism.With advantages in clinical applications,these data suggest that the use of MSCs as a multi-target modulator of Aβwould be an effective therapeutic approach in AD.
文摘Alzheimer's disease(AD):AD,a neurodegenerative disorder and a significant cause of dementia throughout the world mostly affects the older adults but sometimes also seen in young age(early state AD)(Agrawal et al.,2017).
文摘Alzheimer’s disease is the most common form of dementia, affecting nearly 9.9 million new people every year. The disease provokes important memory and cognitive impairment, eventually causing individuals to forget their loved ones and rendering them completely dependent on their caretakers. Alzheimer’s patients typically experience more negative emotions, such as frustration and apathy, than healthy older adults. There is currently no cure for the disease. Our research group explores how the integration of virtual reality (VR) and an EEG-based intelligent agent in music therapy can alleviate psychological and cognitive symptoms of the disease. We propose a theory explaining how, through activation of the brain reward system, music can reduce negative emotions, increase positive emotions and as a result increase performance on cognitive tasks. The results of our experimental study concord with our theory: emotional states of participants are improved, as per recorded through EEG, and performances on memory tasks show improvement following the intervention. We believe that the combination of EEG brain assessment, VR and music therapy is a promising method for emotional states and cognitive symptoms of Alzheimer’s disease.