Alzheimer’s disease is a debilitating,progressive neurodegenerative disorder characterized by the progressive accumulation of abnormal proteins,including amyloid plaques and intracellular tau tangles,primarily within...Alzheimer’s disease is a debilitating,progressive neurodegenerative disorder characterized by the progressive accumulation of abnormal proteins,including amyloid plaques and intracellular tau tangles,primarily within the brain.Lysosomes,crucial intracellular organelles responsible for protein degradation,play a key role in maintaining cellular homeostasis.Some studies have suggested a link between the dysregulation of the lysosomal system and pathogenesis of neurodegenerative diseases,including Alzheimer’s disease.Restoring the normal physiological function of lysosomes hold the potential to reduce the pathological burden and improve the symptoms of Alzheimer’s disease.Currently,the efficacy of drugs in treating Alzheimer’s disease is limited,with major challenges in drug delivery efficiency and targeting.Recently,nanomaterials have gained widespread use in Alzheimer’s disease drug research owing to their favorable physical and chemical properties.This review aims to provide a comprehensive overview of recent advances in using nanomaterials(polymeric nanomaterials,nanoemulsions,and carbon-based nanomaterials)to enhance lysosomal function in treating Alzheimer’s disease.This review also explores new concepts and potential therapeutic strategies for Alzheimer’s disease through the integration of nanomaterials and modulation of lysosomal function.In conclusion,this review emphasizes the potential of nanomaterials in modulating lysosomal function to improve the pathological features of Alzheimer’s disease.The application of nanotechnology to the development of Alzheimer’s disease drugs brings new ideas and approaches for future treatment of this disease.展开更多
TAU is a neuronal microtubule-associated protein preferentially located in axons.In a battery of neurodegenerative diseases termed"tauopathies,"including Alzheimer's disease (AD),TAU is missorted and abn...TAU is a neuronal microtubule-associated protein preferentially located in axons.In a battery of neurodegenerative diseases termed"tauopathies,"including Alzheimer's disease (AD),TAU is missorted and abnormally phosphorylated,leading to filamentous accumulations of hyperphosphorylated TAU,a pathological hallmark and potential disease driver of AD and related tauopathies (Zempel,2024).展开更多
Alzheimer's disease poses a significant global health challenge owing to the progressive cognitive decline of patients and absence of curative treatments.The current therapeutic strategies,primarily based on choli...Alzheimer's disease poses a significant global health challenge owing to the progressive cognitive decline of patients and absence of curative treatments.The current therapeutic strategies,primarily based on cholinesterase inhibitors and N-methyl-Daspartate receptor antagonists,offer limited symptomatic relief without halting disease progression,highlighting an urgent need for novel research directions that address the key mechanisms underlying Alzheimer's disease.Recent studies have provided insights into the critical role of glycolysis,a fundamental energy metabolism pathway in the brain,in the pathogenesis of Alzheimer's disease.Alterations in glycolytic processes within neurons and glial cells,including microglia,astrocytes,and oligodendrocytes,have been identified as significant contributors to the pathological landscape of Alzheimer's disease.Glycolytic changes impact neuronal health and function,thus offering promising targets for therapeutic intervention.The purpose of this review is to consolidate current knowledge on the modifications in glycolysis associated with Alzheimer's disease and explore the mechanisms by which these abnormalities contribute to disease onset and progression.Comprehensive focus on the pathways through which glycolytic dysfunction influences Alzheimer's disease pathology should provide insights into potential therapeutic targets and strategies that pave the way for groundbreaking treatments,emphasizing the importance of understanding metabolic processes in the quest for clarification and management of Alzheimer's disease.展开更多
The complex morphological,anatomical,physiological,and chemical mechanisms within the aging brain have been the hot topic of research for centuries.The aging process alters the brain structure that affects functions a...The complex morphological,anatomical,physiological,and chemical mechanisms within the aging brain have been the hot topic of research for centuries.The aging process alters the brain structure that affects functions and cognitions,but the worsening of such processes contributes to the pathogenesis of neurodegenerative disorders,such as Alzheimer's disease.Beyond these observable,mild morphological shifts,significant functional modifications in neurotransmission and neuronal activity critically influence the aging brain.Understanding these changes is important for maintaining cognitive health,especially given the increasing prevalence of age-related conditions that affect cognition.This review aims to explore the age-induced changes in brain plasticity and molecular processes,differentiating normal aging from the pathogenesis of Alzheimer's disease,thereby providing insights into predicting the risk of dementia,particularly Alzheimer's disease.展开更多
γ-Secretase,called“the proteasome of the membrane,”is a membrane-embedded protease complex that cleaves 150+peptide substrates with central roles in biology and medicine,including amyloid precursor protein and the ...γ-Secretase,called“the proteasome of the membrane,”is a membrane-embedded protease complex that cleaves 150+peptide substrates with central roles in biology and medicine,including amyloid precursor protein and the Notch family of cell-surface receptors.Mutations inγ-secretase and amyloid precursor protein lead to early-onset familial Alzheimer’s disease.γ-Secretase has thus served as a critical drug target for treating familial Alzheimer’s disease and the more common late-onset Alzheimer’s disease as well.However,critical gaps remain in understanding the mechanisms of processive proteolysis of substrates,the effects of familial Alzheimer’s disease mutations,and allosteric modulation of substrate cleavage byγ-secretase.In this review,we focus on recent studies of structural dynamic mechanisms ofγ-secretase.Different mechanisms,including the“Fit-Stay-Trim,”“Sliding-Unwinding,”and“Tilting-Unwinding,”have been proposed for substrate proteolysis of amyloid precursor protein byγ-secretase based on all-atom molecular dynamics simulations.While an incorrect registry of the Notch1 substrate was identified in the cryo-electron microscopy structure of Notch1-boundγ-secretase,molecular dynamics simulations on a resolved model of Notch1-boundγ-secretase that was reconstructed using the amyloid precursor protein-boundγ-secretase as a template successfully capturedγ-secretase activation for proper cleavages of both wildtype and mutant Notch,being consistent with biochemical experimental findings.The approach could be potentially applied to decipher the processing mechanisms of various substrates byγ-secretase.In addition,controversy over the effects of familial Alzheimer’s disease mutations,particularly the issue of whether they stabilize or destabilizeγ-secretase-substrate complexes,is discussed.Finally,an outlook is provided for future studies ofγ-secretase,including pathways of substrate binding and product release,effects of modulators on familial Alzheimer’s disease mutations of theγ-secretase-substrate complexes.Comprehensive understanding of the functional mechanisms ofγ-secretase will greatly facilitate the rational design of effective drug molecules for treating familial Alzheimer’s disease and perhaps Alzheimer’s disease in general.展开更多
Alzheimer’s disease is a neurodegenerative disease resulting from deficits in synaptic transmission and homeostasis.The Alzheimer’s disease brain tends to be hyperexcitable and hypersynchronized,thereby causing neur...Alzheimer’s disease is a neurodegenerative disease resulting from deficits in synaptic transmission and homeostasis.The Alzheimer’s disease brain tends to be hyperexcitable and hypersynchronized,thereby causing neurodegeneration and ultimately disrupting the operational abilities in daily life,leaving patients incapacitated.Repetitive transcranial magnetic stimulation is a cost-effective,neuro-modulatory technique used for multiple neurological conditions.Over the past two decades,it has been widely used to predict cognitive decline;identify pathophysiological markers;promote neuroplasticity;and assess brain excitability,plasticity,and connectivity.It has also been applied to patients with dementia,because it can yield facilitatory effects on cognition and promote brain recovery after a neurological insult.However,its therapeutic effectiveness at the molecular and synaptic levels has not been elucidated because of a limited number of studies.This study aimed to characterize the neurobiological changes following repetitive transcranial magnetic stimulation treatment,evaluate its effects on synaptic plasticity,and identify the associated mechanisms.This review essentially focuses on changes in the pathology,amyloidogenesis,and clearance pathways,given that amyloid deposition is a major hypothesis in the pathogenesis of Alzheimer’s disease.Apoptotic mechanisms associated with repetitive transcranial magnetic stimulation procedures and different pathways mediating gene transcription,which are closely related to the neural regeneration process,are also highlighted.Finally,we discuss the outcomes of animal studies in which neuroplasticity is modulated and assessed at the structural and functional levels by using repetitive transcranial magnetic stimulation,with the aim to highlight future directions for better clinical translations.展开更多
Alzheimer’s disease is a common neurodegenerative disorder defined by decreased reasoning abilities,memory loss,and cognitive deterioration.The presence of the blood-brain barrier presents a major obstacle to the dev...Alzheimer’s disease is a common neurodegenerative disorder defined by decreased reasoning abilities,memory loss,and cognitive deterioration.The presence of the blood-brain barrier presents a major obstacle to the development of effective drug therapies for Alzheimer’s disease.The use of ultrasound as a novel physical modulation approach has garnered widespread attention in recent years.As a safe and feasible therapeutic and drug-delivery method,ultrasound has shown promise in improving cognitive deficits.This article provides a summary of the application of ultrasound technology for treating Alzheimer’s disease over the past 5 years,including standalone ultrasound treatment,ultrasound combined with microbubbles or drug therapy,and magnetic resonance imaging-guided focused ultrasound therapy.Emphasis is placed on the benefits of introducing these treatment methods and their potential mechanisms.We found that several ultrasound methods can open the blood-brain barrier and effectively alleviate amyloid-βplaque deposition.We believe that ultrasound is an effective therapy for Alzheimer’s disease,and this review provides a theoretical basis for future ultrasound treatment methods.展开更多
Hippocampal neuronal loss causes cognitive dysfunction in Alzheimer’s disease.Adult hippocampal neurogenesis is reduced in patients with Alzheimer’s disease.Exercise stimulates adult hippocampal neurogenesis in rode...Hippocampal neuronal loss causes cognitive dysfunction in Alzheimer’s disease.Adult hippocampal neurogenesis is reduced in patients with Alzheimer’s disease.Exercise stimulates adult hippocampal neurogenesis in rodents and improves memory and slows cognitive decline in patients with Alzheimer’s disease.However,the molecular pathways for exercise-induced adult hippocampal neurogenesis and improved cognition in Alzheimer’s disease are poorly understood.Recently,regulator of G protein signaling 6(RGS6)was identified as the mediator of voluntary running-induced adult hippocampal neurogenesis in mice.Here,we generated novel RGS6fl/fl;APP_(SWE) mice and used retroviral approaches to examine the impact of RGS6 deletion from dentate gyrus neuronal progenitor cells on voluntary running-induced adult hippocampal neurogenesis and cognition in an amyloid-based Alzheimer’s disease mouse model.We found that voluntary running in APP_(SWE) mice restored their hippocampal cognitive impairments to that of control mice.This cognitive rescue was abolished by RGS6 deletion in dentate gyrus neuronal progenitor cells,which also abolished running-mediated increases in adult hippocampal neurogenesis.Adult hippocampal neurogenesis was reduced in sedentary APP_(SWE) mice versus control mice,with basal adult hippocampal neurogenesis reduced by RGS6 deletion in dentate gyrus neural precursor cells.RGS6 was expressed in neurons within the dentate gyrus of patients with Alzheimer’s disease with significant loss of these RGS6-expressing neurons.Thus,RGS6 mediated voluntary running-induced rescue of impaired cognition and adult hippocampal neurogenesis in APP_(SWE) mice,identifying RGS6 in dentate gyrus neural precursor cells as a possible therapeutic target in Alzheimer’s disease.展开更多
Alzheimer’s disease not only affects the brain,but also induces metabolic dysfunction in peripheral organs and alters the gut microbiota.The aim of this study was to investigate systemic changes that occur in Alzhei...Alzheimer’s disease not only affects the brain,but also induces metabolic dysfunction in peripheral organs and alters the gut microbiota.The aim of this study was to investigate systemic changes that occur in Alzheimer’s disease,in particular the association between changes in peripheral organ metabolism,changes in gut microbial composition,and Alzheimer’s disease development.To do this,we analyzed peripheral organ metabolism and the gut microbiota in amyloid precursor protein-presenilin 1(APP/PS1)transgenic and control mice at 3,6,9,and 12 months of age.Twelve-month-old APP/PS1 mice exhibited cognitive impairment,Alzheimer’s disease-related brain changes,distinctive metabolic disturbances in peripheral organs and fecal samples(as detected by untargeted metabolomics sequencing),and substantial changes in gut microbial composition compared with younger APP/PS1 mice.Notably,a strong correlation emerged between the gut microbiota and kidney metabolism in APP/PS1 mice.These findings suggest that alterations in peripheral organ metabolism and the gut microbiota are closely related to Alzheimer’s disease development,indicating potential new directions for therapeutic strategies.展开更多
Alzheimer's disease (AD) is an increasing epidemic threatening public health. Both men and women are susceptible to the disease although women are at a slightly higher risk. The prevalence of AD rises exponentially...Alzheimer's disease (AD) is an increasing epidemic threatening public health. Both men and women are susceptible to the disease although women are at a slightly higher risk. The prevalence of AD rises exponentially in elderly people from 1% at age of 65 to approximately 40%-50% by the age of 95. While the cause of the disease has not been fully understood, genetics plays a role in the onset of the disease. Mutations in three genes (APP, PSENI, and PSEN2) have been found to cause AD and APOE4 allele increases the risk of the disease. As human genomic research progresses, more genes have been identified and linked with AD. Genetic screening tests for persons at high risk of AD are currently available and may help them as well as their families better prepare for a later life with AD.展开更多
Alzheimer’s disease is a prominent chronic neurodegenerative condition characterized by a gradual decline in memory leading to dementia.Growing evidence suggests that Alzheimer’s disease is associated with accumulat...Alzheimer’s disease is a prominent chronic neurodegenerative condition characterized by a gradual decline in memory leading to dementia.Growing evidence suggests that Alzheimer’s disease is associated with accumulating various amyloid-βoligomers in the brain,influenced by complex genetic and environmental factors.The memory and cognitive deficits observed during the prodromal and mild cognitive impairment phases of Alzheimer’s disease are believed to primarily result from synaptic dysfunction.Throughout life,environmental factors can lead to enduring changes in gene expression and the emergence of brain disorders.These changes,known as epigenetic modifications,also play a crucial role in regulating the formation of synapses and their adaptability in response to neuronal activity.In this context,we highlight recent advances in understanding the roles played by key components of the epigenetic machinery,specifically DNA methylation,histone modification,and microRNAs,in the development of Alzheimer’s disease,synaptic function,and activity-dependent synaptic plasticity.Moreover,we explore various strategies,including enriched environments,exposure to non-invasive brain stimulation,and the use of pharmacological agents,aimed at improving synaptic function and enhancing long-term potentiation,a process integral to epigenetic mechanisms.Lastly,we deliberate on the development of effective epigenetic agents and safe therapeutic approaches for managing Alzheimer’s disease.We suggest that addressing Alzheimer’s disease may require distinct tailored epigenetic drugs targeting different disease stages or pathways rather than relying on a single drug.展开更多
Alzheimer’s disease is the most prevalent neurodegenerative disease affecting older adults.Primary features of Alzheimer’s disease include extra cellular aggregation of amyloid-βplaques and the accumulation of neur...Alzheimer’s disease is the most prevalent neurodegenerative disease affecting older adults.Primary features of Alzheimer’s disease include extra cellular aggregation of amyloid-βplaques and the accumulation of neurofibrillary tangles,fo rmed by tau protein,in the cells.While there are amyloid-β-ta rgeting therapies for the treatment of Alzheimer’s disease,these therapies are costly and exhibit potential negative side effects.Mounting evidence suggests significant involvement of tau protein in Alzheimer’s disease-related neurodegeneration.As an important microtubule-associated protein,tau plays an important role in maintaining the stability of neuronal microtubules and promoting axonal growth.In fact,clinical studies have shown that abnormal phosphorylation of tau protein occurs before accumulation of amyloid-βin the brain.Various therapeutic strategies targeting tau protein have begun to emerge,and are considered possible methods to prevent and treat Alzheimer’s disease.Specifically,abnormalities in post-translational modifications of the tau protein,including aberrant phosphorylation,ubiquitination,small ubiquitin-like modifier(SUMO)ylation,acetylation,and truncation,contribute to its microtubule dissociation,misfolding,and subcellular missorting.This causes mitochondrial damage,synaptic impairments,gliosis,and neuroinflammation,eventually leading to neurodegeneration and cognitive deficits.This review summarizes the recent findings on the underlying mechanisms of tau protein in the onset and progression of Alzheimer’s disease and discusses tau-targeted treatment of Alzheimer’s disease.展开更多
Amyloid-beta-induced neuronal cell death contributes to cognitive decline in Alzheimer’s disease.Citri Reticulatae Semen has diverse beneficial effects on neurodegenerative diseases,including Parkinson’s and Hunting...Amyloid-beta-induced neuronal cell death contributes to cognitive decline in Alzheimer’s disease.Citri Reticulatae Semen has diverse beneficial effects on neurodegenerative diseases,including Parkinson’s and Huntington’s diseases,however,the effect of Citri Reticulatae Semen on Alzheimer’s disease remains unelucidated.In the current study,the anti-apoptotic and autophagic roles of Citri Reticulatae Semen extract on amyloid-beta-induced apoptosis in PC12 cells were first investigated.Citri Reticulatae Semen extract protected PC12 cells from amyloid-beta-induced apoptosis by attenuating the Bax/Bcl-2 ratio via activation of autophagy.In addition,Citri Reticulatae Semen extract was confirmed to bind amyloid-beta as revealed by biolayer interferometry in vitro,and suppress amyloid-beta-induced pathology such as paralysis,in a transgenic Caenorhabditis elegans in vivo model.Moreover,genetically defective Caenorhabditis elegans further confirmed that the neuroprotective effect of Citri Reticulatae Semen extract was autophagy-dependent.Most importantly,Citri Reticulatae Semen extract was confirmed to improve cognitive impairment,neuronal injury and amyloid-beta burden in 3×Tg Alzheimer’s disease mice.As revealed by both in vitro and in vivo models,these results suggest that Citri Reticulatae Semen extract is a potential natural therapeutic agent for Alzheimer’s disease via its neuroprotective autophagic effects.展开更多
Recent studies have demonstrated that neuroplasticity,such as synaptic plasticity and neurogenesis,exists throughout the normal lifespan but declines with age and is significantly impaired in individuals with Alzheime...Recent studies have demonstrated that neuroplasticity,such as synaptic plasticity and neurogenesis,exists throughout the normal lifespan but declines with age and is significantly impaired in individuals with Alzheimer’s disease.Hence,promoting neuroplasticity may represent an effective strategy with which Alzheimer’s disease can be alleviated.Due to their significant ability to self-renew,differentiate,and migrate,neural stem cells play an essential role in reversing synaptic and neuronal damage,reducing the pathology of Alzheimer’s disease,including amyloid-β,tau protein,and neuroinflammation,and secreting neurotrophic factors and growth factors that are related to plasticity.These events can promote synaptic plasticity and neurogenesis to repair the microenvironment of the mammalian brain.Consequently,neural stem cells are considered to represent a potential regenerative therapy with which to improve Alzheimer’s disease and other neurodegenerative diseases.In this review,we discuss how neural stem cells regulate neuroplasticity and optimize their effects to enhance their potential for treating Alzheimer’s disease in the clinic.展开更多
The inflammasome is a multiprotein complex involved in innate immunity that mediates the inflammatory response leading to pyroptosis,which is a lytic,inflammatory form of cell death.There is accumulating evidence that...The inflammasome is a multiprotein complex involved in innate immunity that mediates the inflammatory response leading to pyroptosis,which is a lytic,inflammatory form of cell death.There is accumulating evidence that nucleotide-binding domain and leucine-rich repeat pyrin domain containing 3(NLRP3)inflammasome-mediated microglial pyroptosis and NLRP1 inflammasome-mediated neuronal pyroptosis in the brain are closely associated with the pathogenesis of Alzheimer’s disease.In this review,we summarize the possible pathogenic mechanisms of Alzheimer’s disease,focusing on neuroinflammation.We also describe the structures of NLRP3 and NLRP1 and the role their activation plays in Alzheimer’s disease.Finally,we examine the neuroprotective activity of small-molecule inhibitors,endogenous inhibitor proteins,microRNAs,and natural bioactive molecules that target NLRP3 and NLRP1,based on the rationale that inhibiting NLRP3 and NLRP1 inflammasome-mediated pyroptosis can be an effective therapeutic strategy for Alzheimer’s disease.展开更多
Sortilin-related receptor 1(SORL1)is a critical gene associated with late-onset Alzheimer’s disease.SORL1 contributes to the development and progression of this neurodegenerative condition by affecting the transport ...Sortilin-related receptor 1(SORL1)is a critical gene associated with late-onset Alzheimer’s disease.SORL1 contributes to the development and progression of this neurodegenerative condition by affecting the transport and metabolism of intracellularβ-amyloid precursor protein.To better understand the underlying mechanisms of SORL1 in the pathogenesis of late-onset Alzheimer s disease,in this study,we established a mouse model of SorI1 gene knockout using cluste red regularly inters paced short palindro mic repeats-associated protein 9 technology.We found that Sorl1-knocko ut mice displayed deficits in learning and memory.Furthermore,the expression of brain-derived neurotrophic factor was significantly downregulated in the hippocampus and co rtex,and amyloidβ-protein deposits were observed in the brains of 5orl1-knockout mice.In vitro,hippocampal neuronal cell synapses from homozygous Sorl1-knockout mice were impaired.The expression of synaptic proteins,including Drebrin and NR2B,was significantly reduced,and also their colocalization.Additionally,by knocking out the Sorl1 gene in N2a cells,we found that expression of the N-methyl-D-aspartate receptor,NR2B,and cyclic adenosine monophosphate-response element binding protein was also inhibited.These findings suggest that SORL1 participates in the pathogenesis of late-onset Alzheimer s disease by regulating the N-methyl-D-aspartate receptor NR2B/cyclic adenosine monophosphate-response element binding protein signaling axis.展开更多
Regulated cell death is a genetically determined form of programmed cell death that commonly occurs during the development of living organisms.This process plays a crucial role in modulating homeostasis and is evoluti...Regulated cell death is a genetically determined form of programmed cell death that commonly occurs during the development of living organisms.This process plays a crucial role in modulating homeostasis and is evolutionarily conserved across a diverse range of living organisms.Ferroptosis is a classic regulatory mode of cell death.Extensive studies of regulatory cell death in Alzheimer’s disease have yielded increasing evidence that fe rroptosis is closely related to the occurrence,development,and prognosis of Alzheimer’s disease.This review summarizes the molecular mechanisms of ferroptosis and recent research advances in the role of ferro ptosis in Alzheimer’s disease.Our findings are expected to serve as a theoretical and experimental foundation for clinical research and targeted therapy for Alzheimer’s disease.展开更多
The blood-brain barrier is a unique function of the microvasculature in the brain parenchyma that maintains homeostasis in the central nervous system.Blood-brain barrier breakdown is a common pathology in various neur...The blood-brain barrier is a unique function of the microvasculature in the brain parenchyma that maintains homeostasis in the central nervous system.Blood-brain barrier breakdown is a common pathology in various neurological diseases,such as Alzheimer’s disease,stroke,multiple sclerosis,and Parkinson’s disease.Traditionally,it has been considered a consequence of neuroinflammation or neurodegeneration,but recent advanced imaging techniques and detailed studies in animal models show that blood-brain barrier breakdown occurs early in the disease process and may precede neuronal loss.Thus,the blood-brain barrier is attractive as a potential therapeutic target for neurological diseases that lack effective therapeutics.To elucidate the molecular mechanism underlying blood-brain barrier breakdown and translate them into therapeutic strategies for neurological diseases,there is a growing demand for experimental models of human origin that allow for functional assessments.Recently,several human induced pluripotent stem cell-derived blood-brain barrier models have been established and various in vitro blood-brain barrier models using microdevices have been proposed.Especially in the Alzheimer’s disease field,the human evidence for blood-brain barrier dysfunction has been demonstrated and human induced pluripotent stem cell-derived blood-brain barrier models have suggested the putative molecular mechanisms of pathological blood-brain barrier.In this review,we summarize recent evidence of blood-brain barrier dysfunction in Alzheimer’s disease from pathological analyses,imaging studies,animal models,and stem cell sources.Additionally,we discuss the potential future directions for blood-brain barrier research.展开更多
Inflammation has been shown to play an important role in the progression of Alzheimer's disease (AD). Recent epidemical study indicates that the incidence of AD in some populations is substantially influenced by th...Inflammation has been shown to play an important role in the progression of Alzheimer's disease (AD). Recent epidemical study indicates that the incidence of AD in some populations is substantially influenced by the gene polymorphisms of the inflammation mediators. Meanwhile, an ensured risk factor, the ApoE ε4 allele is also reported to directly promote inflammation. Accordingly, it appears that an individual genetic background has partly determined his predisposition for AD by the extent of the inflammation response to the chronic stimulus by β-amyloid peptide (Aβ) deposits and other antigen stressor in the elderly. Hence we present a hypothesis that the inflammation genotypes may contribute to AD susceptibility. This may provide a new orientation both for future identification of individuals at risk and for personalized medication.展开更多
BACKGROUND Alzheimer’s disease(AD)is a serious disease causing human dementia and social problems.The quality of life and prognosis of AD patients have attracted much attention.The role of chronic immune inflammation...BACKGROUND Alzheimer’s disease(AD)is a serious disease causing human dementia and social problems.The quality of life and prognosis of AD patients have attracted much attention.The role of chronic immune inflammation in the pathogenesis of AD is becoming more and more important.AIM To study the relationship among cognitive dysfunction,abnormal cellular immune function,neuroimaging results and poor prognostic factors in patients.METHODS A retrospective analysis of 62 hospitalized patients clinical diagnosed with AD who were admitted to our hospital from November 2015 to November 2020.Collect cognitive dysfunction performance characteristics,laboratory test data and neuroimaging data from medical records within 24 h of admission,including Mini Mental State Examination Scale score,drawing clock test,blood T lymphocyte subsets,and neutrophils and lymphocyte ratio(NLR),disturbance of consciousness,extrapyramidal symptoms,electroencephalogram(EEG)and head nucleus magnetic spectroscopy(MRS)and other data.Multivariate logistic regression analysis was used to determine independent prog-nostic factors.the modified Rankin scale(mRS)was used to determine whether the prognosis was good.The correlation between drug treatment and prognostic mRS score was tested by the rank sum test.RESULTS Univariate analysis showed that abnormal cellular immune function,extrapyramidal symptoms,obvious disturbance of consciousness,abnormal EEG,increased NLR,abnormal MRS,and complicated pneumonia were related to the poor prognosis of AD patients.Multivariate logistic regression analysis showed that the decrease in the proportion of T lym-phocytes in the blood after abnormal cellular immune function(odd ratio:2.078,95%confidence interval:1.156-3.986,P<0.05)was an independent risk factor for predicting the poor prognosis of AD.The number of days of donepezil treatment to improve cognitive function was negatively correlated with mRS score(r=0.578,P<0.05).CONCLUSION The decrease in the proportion of T lymphocytes may have predictive value for the poor prognosis of AD.It is recommended that the proportion of T lymphocytes<55%is used as the cut-off threshold for predicting the poor prog-nosis of AD.The early and continuous drug treatment is associated with a good prognosis.展开更多
基金supported by the Natural Science Foundation of Shanghai,No.22ZR147750Science and Technology Innovation Action Plan of Shanghai Science and Technology Commission,No.23Y11906600Shanghai Changzheng Hospital Innovative Clinical Research Project,No.2020YLCYJ-Y02(all to YY).
文摘Alzheimer’s disease is a debilitating,progressive neurodegenerative disorder characterized by the progressive accumulation of abnormal proteins,including amyloid plaques and intracellular tau tangles,primarily within the brain.Lysosomes,crucial intracellular organelles responsible for protein degradation,play a key role in maintaining cellular homeostasis.Some studies have suggested a link between the dysregulation of the lysosomal system and pathogenesis of neurodegenerative diseases,including Alzheimer’s disease.Restoring the normal physiological function of lysosomes hold the potential to reduce the pathological burden and improve the symptoms of Alzheimer’s disease.Currently,the efficacy of drugs in treating Alzheimer’s disease is limited,with major challenges in drug delivery efficiency and targeting.Recently,nanomaterials have gained widespread use in Alzheimer’s disease drug research owing to their favorable physical and chemical properties.This review aims to provide a comprehensive overview of recent advances in using nanomaterials(polymeric nanomaterials,nanoemulsions,and carbon-based nanomaterials)to enhance lysosomal function in treating Alzheimer’s disease.This review also explores new concepts and potential therapeutic strategies for Alzheimer’s disease through the integration of nanomaterials and modulation of lysosomal function.In conclusion,this review emphasizes the potential of nanomaterials in modulating lysosomal function to improve the pathological features of Alzheimer’s disease.The application of nanotechnology to the development of Alzheimer’s disease drugs brings new ideas and approaches for future treatment of this disease.
文摘TAU is a neuronal microtubule-associated protein preferentially located in axons.In a battery of neurodegenerative diseases termed"tauopathies,"including Alzheimer's disease (AD),TAU is missorted and abnormally phosphorylated,leading to filamentous accumulations of hyperphosphorylated TAU,a pathological hallmark and potential disease driver of AD and related tauopathies (Zempel,2024).
基金supported by the National Natural Science Foundation of China,No.82271214(to ZY)the Natural Science Foundation of Hubei Province of China,No.2022CFB109(to ZY)。
文摘Alzheimer's disease poses a significant global health challenge owing to the progressive cognitive decline of patients and absence of curative treatments.The current therapeutic strategies,primarily based on cholinesterase inhibitors and N-methyl-Daspartate receptor antagonists,offer limited symptomatic relief without halting disease progression,highlighting an urgent need for novel research directions that address the key mechanisms underlying Alzheimer's disease.Recent studies have provided insights into the critical role of glycolysis,a fundamental energy metabolism pathway in the brain,in the pathogenesis of Alzheimer's disease.Alterations in glycolytic processes within neurons and glial cells,including microglia,astrocytes,and oligodendrocytes,have been identified as significant contributors to the pathological landscape of Alzheimer's disease.Glycolytic changes impact neuronal health and function,thus offering promising targets for therapeutic intervention.The purpose of this review is to consolidate current knowledge on the modifications in glycolysis associated with Alzheimer's disease and explore the mechanisms by which these abnormalities contribute to disease onset and progression.Comprehensive focus on the pathways through which glycolytic dysfunction influences Alzheimer's disease pathology should provide insights into potential therapeutic targets and strategies that pave the way for groundbreaking treatments,emphasizing the importance of understanding metabolic processes in the quest for clarification and management of Alzheimer's disease.
文摘The complex morphological,anatomical,physiological,and chemical mechanisms within the aging brain have been the hot topic of research for centuries.The aging process alters the brain structure that affects functions and cognitions,but the worsening of such processes contributes to the pathogenesis of neurodegenerative disorders,such as Alzheimer's disease.Beyond these observable,mild morphological shifts,significant functional modifications in neurotransmission and neuronal activity critically influence the aging brain.Understanding these changes is important for maintaining cognitive health,especially given the increasing prevalence of age-related conditions that affect cognition.This review aims to explore the age-induced changes in brain plasticity and molecular processes,differentiating normal aging from the pathogenesis of Alzheimer's disease,thereby providing insights into predicting the risk of dementia,particularly Alzheimer's disease.
基金supported in part by Award 2121063 from National Science Foundation(to YM)AG66986 from the National Institutes of Health(to MSW).
文摘γ-Secretase,called“the proteasome of the membrane,”is a membrane-embedded protease complex that cleaves 150+peptide substrates with central roles in biology and medicine,including amyloid precursor protein and the Notch family of cell-surface receptors.Mutations inγ-secretase and amyloid precursor protein lead to early-onset familial Alzheimer’s disease.γ-Secretase has thus served as a critical drug target for treating familial Alzheimer’s disease and the more common late-onset Alzheimer’s disease as well.However,critical gaps remain in understanding the mechanisms of processive proteolysis of substrates,the effects of familial Alzheimer’s disease mutations,and allosteric modulation of substrate cleavage byγ-secretase.In this review,we focus on recent studies of structural dynamic mechanisms ofγ-secretase.Different mechanisms,including the“Fit-Stay-Trim,”“Sliding-Unwinding,”and“Tilting-Unwinding,”have been proposed for substrate proteolysis of amyloid precursor protein byγ-secretase based on all-atom molecular dynamics simulations.While an incorrect registry of the Notch1 substrate was identified in the cryo-electron microscopy structure of Notch1-boundγ-secretase,molecular dynamics simulations on a resolved model of Notch1-boundγ-secretase that was reconstructed using the amyloid precursor protein-boundγ-secretase as a template successfully capturedγ-secretase activation for proper cleavages of both wildtype and mutant Notch,being consistent with biochemical experimental findings.The approach could be potentially applied to decipher the processing mechanisms of various substrates byγ-secretase.In addition,controversy over the effects of familial Alzheimer’s disease mutations,particularly the issue of whether they stabilize or destabilizeγ-secretase-substrate complexes,is discussed.Finally,an outlook is provided for future studies ofγ-secretase,including pathways of substrate binding and product release,effects of modulators on familial Alzheimer’s disease mutations of theγ-secretase-substrate complexes.Comprehensive understanding of the functional mechanisms ofγ-secretase will greatly facilitate the rational design of effective drug molecules for treating familial Alzheimer’s disease and perhaps Alzheimer’s disease in general.
基金supported by the Hefei Comprehensive National Science Center Hefei Brain Project(to KW)the National Natural Science Foundation of China,Nos.31970979(to KW),82101498(to XW)the STI2030-Major Projects,No.2021ZD0201800(to PH).
文摘Alzheimer’s disease is a neurodegenerative disease resulting from deficits in synaptic transmission and homeostasis.The Alzheimer’s disease brain tends to be hyperexcitable and hypersynchronized,thereby causing neurodegeneration and ultimately disrupting the operational abilities in daily life,leaving patients incapacitated.Repetitive transcranial magnetic stimulation is a cost-effective,neuro-modulatory technique used for multiple neurological conditions.Over the past two decades,it has been widely used to predict cognitive decline;identify pathophysiological markers;promote neuroplasticity;and assess brain excitability,plasticity,and connectivity.It has also been applied to patients with dementia,because it can yield facilitatory effects on cognition and promote brain recovery after a neurological insult.However,its therapeutic effectiveness at the molecular and synaptic levels has not been elucidated because of a limited number of studies.This study aimed to characterize the neurobiological changes following repetitive transcranial magnetic stimulation treatment,evaluate its effects on synaptic plasticity,and identify the associated mechanisms.This review essentially focuses on changes in the pathology,amyloidogenesis,and clearance pathways,given that amyloid deposition is a major hypothesis in the pathogenesis of Alzheimer’s disease.Apoptotic mechanisms associated with repetitive transcranial magnetic stimulation procedures and different pathways mediating gene transcription,which are closely related to the neural regeneration process,are also highlighted.Finally,we discuss the outcomes of animal studies in which neuroplasticity is modulated and assessed at the structural and functional levels by using repetitive transcranial magnetic stimulation,with the aim to highlight future directions for better clinical translations.
基金supported by the National Natural Science Foundation of China,Nos.82371886(to JY),81925020(to DM),82202797(to LW),and 82271218(to CZ).
文摘Alzheimer’s disease is a common neurodegenerative disorder defined by decreased reasoning abilities,memory loss,and cognitive deterioration.The presence of the blood-brain barrier presents a major obstacle to the development of effective drug therapies for Alzheimer’s disease.The use of ultrasound as a novel physical modulation approach has garnered widespread attention in recent years.As a safe and feasible therapeutic and drug-delivery method,ultrasound has shown promise in improving cognitive deficits.This article provides a summary of the application of ultrasound technology for treating Alzheimer’s disease over the past 5 years,including standalone ultrasound treatment,ultrasound combined with microbubbles or drug therapy,and magnetic resonance imaging-guided focused ultrasound therapy.Emphasis is placed on the benefits of introducing these treatment methods and their potential mechanisms.We found that several ultrasound methods can open the blood-brain barrier and effectively alleviate amyloid-βplaque deposition.We believe that ultrasound is an effective therapy for Alzheimer’s disease,and this review provides a theoretical basis for future ultrasound treatment methods.
基金supported by the National Institutes of Health,Nos.AA025919,AA025919-03S1,and AA025919-05S1(all to RAF).
文摘Hippocampal neuronal loss causes cognitive dysfunction in Alzheimer’s disease.Adult hippocampal neurogenesis is reduced in patients with Alzheimer’s disease.Exercise stimulates adult hippocampal neurogenesis in rodents and improves memory and slows cognitive decline in patients with Alzheimer’s disease.However,the molecular pathways for exercise-induced adult hippocampal neurogenesis and improved cognition in Alzheimer’s disease are poorly understood.Recently,regulator of G protein signaling 6(RGS6)was identified as the mediator of voluntary running-induced adult hippocampal neurogenesis in mice.Here,we generated novel RGS6fl/fl;APP_(SWE) mice and used retroviral approaches to examine the impact of RGS6 deletion from dentate gyrus neuronal progenitor cells on voluntary running-induced adult hippocampal neurogenesis and cognition in an amyloid-based Alzheimer’s disease mouse model.We found that voluntary running in APP_(SWE) mice restored their hippocampal cognitive impairments to that of control mice.This cognitive rescue was abolished by RGS6 deletion in dentate gyrus neuronal progenitor cells,which also abolished running-mediated increases in adult hippocampal neurogenesis.Adult hippocampal neurogenesis was reduced in sedentary APP_(SWE) mice versus control mice,with basal adult hippocampal neurogenesis reduced by RGS6 deletion in dentate gyrus neural precursor cells.RGS6 was expressed in neurons within the dentate gyrus of patients with Alzheimer’s disease with significant loss of these RGS6-expressing neurons.Thus,RGS6 mediated voluntary running-induced rescue of impaired cognition and adult hippocampal neurogenesis in APP_(SWE) mice,identifying RGS6 in dentate gyrus neural precursor cells as a possible therapeutic target in Alzheimer’s disease.
基金financially supported by the National Natural Science Foundation of China,No.823 74552 (to WP)the Science and Technology Innovation Program of Hunan Province,No.2022RC1220 (to WP)+1 种基金the Natural Science Foundation of Hunan Province of China,Nos.2020JJ4803 (to WP),2022JJ40723 (to MY)the Scientific Research Launch Project for New Employees of the Second Xiangya Hospital of Central South University (to MY)
文摘Alzheimer’s disease not only affects the brain,but also induces metabolic dysfunction in peripheral organs and alters the gut microbiota.The aim of this study was to investigate systemic changes that occur in Alzheimer’s disease,in particular the association between changes in peripheral organ metabolism,changes in gut microbial composition,and Alzheimer’s disease development.To do this,we analyzed peripheral organ metabolism and the gut microbiota in amyloid precursor protein-presenilin 1(APP/PS1)transgenic and control mice at 3,6,9,and 12 months of age.Twelve-month-old APP/PS1 mice exhibited cognitive impairment,Alzheimer’s disease-related brain changes,distinctive metabolic disturbances in peripheral organs and fecal samples(as detected by untargeted metabolomics sequencing),and substantial changes in gut microbial composition compared with younger APP/PS1 mice.Notably,a strong correlation emerged between the gut microbiota and kidney metabolism in APP/PS1 mice.These findings suggest that alterations in peripheral organ metabolism and the gut microbiota are closely related to Alzheimer’s disease development,indicating potential new directions for therapeutic strategies.
文摘Alzheimer's disease (AD) is an increasing epidemic threatening public health. Both men and women are susceptible to the disease although women are at a slightly higher risk. The prevalence of AD rises exponentially in elderly people from 1% at age of 65 to approximately 40%-50% by the age of 95. While the cause of the disease has not been fully understood, genetics plays a role in the onset of the disease. Mutations in three genes (APP, PSENI, and PSEN2) have been found to cause AD and APOE4 allele increases the risk of the disease. As human genomic research progresses, more genes have been identified and linked with AD. Genetic screening tests for persons at high risk of AD are currently available and may help them as well as their families better prepare for a later life with AD.
基金supported by a grant from the Massachusetts Alzheimer’s Disease Research Center(5P50 AG 005134)(to SL).
文摘Alzheimer’s disease is a prominent chronic neurodegenerative condition characterized by a gradual decline in memory leading to dementia.Growing evidence suggests that Alzheimer’s disease is associated with accumulating various amyloid-βoligomers in the brain,influenced by complex genetic and environmental factors.The memory and cognitive deficits observed during the prodromal and mild cognitive impairment phases of Alzheimer’s disease are believed to primarily result from synaptic dysfunction.Throughout life,environmental factors can lead to enduring changes in gene expression and the emergence of brain disorders.These changes,known as epigenetic modifications,also play a crucial role in regulating the formation of synapses and their adaptability in response to neuronal activity.In this context,we highlight recent advances in understanding the roles played by key components of the epigenetic machinery,specifically DNA methylation,histone modification,and microRNAs,in the development of Alzheimer’s disease,synaptic function,and activity-dependent synaptic plasticity.Moreover,we explore various strategies,including enriched environments,exposure to non-invasive brain stimulation,and the use of pharmacological agents,aimed at improving synaptic function and enhancing long-term potentiation,a process integral to epigenetic mechanisms.Lastly,we deliberate on the development of effective epigenetic agents and safe therapeutic approaches for managing Alzheimer’s disease.We suggest that addressing Alzheimer’s disease may require distinct tailored epigenetic drugs targeting different disease stages or pathways rather than relying on a single drug.
基金supported by the National Natural Science Foundation of China,No.82101493(to JY)。
文摘Alzheimer’s disease is the most prevalent neurodegenerative disease affecting older adults.Primary features of Alzheimer’s disease include extra cellular aggregation of amyloid-βplaques and the accumulation of neurofibrillary tangles,fo rmed by tau protein,in the cells.While there are amyloid-β-ta rgeting therapies for the treatment of Alzheimer’s disease,these therapies are costly and exhibit potential negative side effects.Mounting evidence suggests significant involvement of tau protein in Alzheimer’s disease-related neurodegeneration.As an important microtubule-associated protein,tau plays an important role in maintaining the stability of neuronal microtubules and promoting axonal growth.In fact,clinical studies have shown that abnormal phosphorylation of tau protein occurs before accumulation of amyloid-βin the brain.Various therapeutic strategies targeting tau protein have begun to emerge,and are considered possible methods to prevent and treat Alzheimer’s disease.Specifically,abnormalities in post-translational modifications of the tau protein,including aberrant phosphorylation,ubiquitination,small ubiquitin-like modifier(SUMO)ylation,acetylation,and truncation,contribute to its microtubule dissociation,misfolding,and subcellular missorting.This causes mitochondrial damage,synaptic impairments,gliosis,and neuroinflammation,eventually leading to neurodegeneration and cognitive deficits.This review summarizes the recent findings on the underlying mechanisms of tau protein in the onset and progression of Alzheimer’s disease and discusses tau-targeted treatment of Alzheimer’s disease.
基金supported by FDCT grants from the Macao Science and Technology Development Fund,China,No.002/2023/ALC(to BYKL)Foshan Medicine Dengfeng Project of China 2019-2021(to BYKL)+3 种基金the Science and Technology Program of Sichuan Province,Nos.2022YFS0620(to DQ)and MZGC20230041(to XFW)the TCMs Commission of Sichuan Province,No.2021MS469(to YT)the Science and Technology Program of Luzhou,No.2022-WGR-194(to YT)the Southwest Medical University Science and Technology Program,No.2021NJXNYD04(to DQ).
文摘Amyloid-beta-induced neuronal cell death contributes to cognitive decline in Alzheimer’s disease.Citri Reticulatae Semen has diverse beneficial effects on neurodegenerative diseases,including Parkinson’s and Huntington’s diseases,however,the effect of Citri Reticulatae Semen on Alzheimer’s disease remains unelucidated.In the current study,the anti-apoptotic and autophagic roles of Citri Reticulatae Semen extract on amyloid-beta-induced apoptosis in PC12 cells were first investigated.Citri Reticulatae Semen extract protected PC12 cells from amyloid-beta-induced apoptosis by attenuating the Bax/Bcl-2 ratio via activation of autophagy.In addition,Citri Reticulatae Semen extract was confirmed to bind amyloid-beta as revealed by biolayer interferometry in vitro,and suppress amyloid-beta-induced pathology such as paralysis,in a transgenic Caenorhabditis elegans in vivo model.Moreover,genetically defective Caenorhabditis elegans further confirmed that the neuroprotective effect of Citri Reticulatae Semen extract was autophagy-dependent.Most importantly,Citri Reticulatae Semen extract was confirmed to improve cognitive impairment,neuronal injury and amyloid-beta burden in 3×Tg Alzheimer’s disease mice.As revealed by both in vitro and in vivo models,these results suggest that Citri Reticulatae Semen extract is a potential natural therapeutic agent for Alzheimer’s disease via its neuroprotective autophagic effects.
基金supported by the National Natural Science Foundation of China,No.82074533(to LZ).
文摘Recent studies have demonstrated that neuroplasticity,such as synaptic plasticity and neurogenesis,exists throughout the normal lifespan but declines with age and is significantly impaired in individuals with Alzheimer’s disease.Hence,promoting neuroplasticity may represent an effective strategy with which Alzheimer’s disease can be alleviated.Due to their significant ability to self-renew,differentiate,and migrate,neural stem cells play an essential role in reversing synaptic and neuronal damage,reducing the pathology of Alzheimer’s disease,including amyloid-β,tau protein,and neuroinflammation,and secreting neurotrophic factors and growth factors that are related to plasticity.These events can promote synaptic plasticity and neurogenesis to repair the microenvironment of the mammalian brain.Consequently,neural stem cells are considered to represent a potential regenerative therapy with which to improve Alzheimer’s disease and other neurodegenerative diseases.In this review,we discuss how neural stem cells regulate neuroplasticity and optimize their effects to enhance their potential for treating Alzheimer’s disease in the clinic.
基金supported by the Natural Science Foundation of Zhejiang Province of China,Nos.LQ22H090003(to JJ),LTGY23C090001(to XZ),LY23H020008(to BH)Sci-Tech Planning Project of Jiaxing,Nos.2021AY30001(to XZ)and 2022AY30020(to JJ).
文摘The inflammasome is a multiprotein complex involved in innate immunity that mediates the inflammatory response leading to pyroptosis,which is a lytic,inflammatory form of cell death.There is accumulating evidence that nucleotide-binding domain and leucine-rich repeat pyrin domain containing 3(NLRP3)inflammasome-mediated microglial pyroptosis and NLRP1 inflammasome-mediated neuronal pyroptosis in the brain are closely associated with the pathogenesis of Alzheimer’s disease.In this review,we summarize the possible pathogenic mechanisms of Alzheimer’s disease,focusing on neuroinflammation.We also describe the structures of NLRP3 and NLRP1 and the role their activation plays in Alzheimer’s disease.Finally,we examine the neuroprotective activity of small-molecule inhibitors,endogenous inhibitor proteins,microRNAs,and natural bioactive molecules that target NLRP3 and NLRP1,based on the rationale that inhibiting NLRP3 and NLRP1 inflammasome-mediated pyroptosis can be an effective therapeutic strategy for Alzheimer’s disease.
基金supported by the Community Development Office of Hunan Provincial Science and Technology DepartmentChina,Nos.2020SK53613(to DH),21JJ31006(to DH)the Fundamental Research Funds of Central South University,Nos.CX20220375(to TX),2023zzts215(to MZ)。
文摘Sortilin-related receptor 1(SORL1)is a critical gene associated with late-onset Alzheimer’s disease.SORL1 contributes to the development and progression of this neurodegenerative condition by affecting the transport and metabolism of intracellularβ-amyloid precursor protein.To better understand the underlying mechanisms of SORL1 in the pathogenesis of late-onset Alzheimer s disease,in this study,we established a mouse model of SorI1 gene knockout using cluste red regularly inters paced short palindro mic repeats-associated protein 9 technology.We found that Sorl1-knocko ut mice displayed deficits in learning and memory.Furthermore,the expression of brain-derived neurotrophic factor was significantly downregulated in the hippocampus and co rtex,and amyloidβ-protein deposits were observed in the brains of 5orl1-knockout mice.In vitro,hippocampal neuronal cell synapses from homozygous Sorl1-knockout mice were impaired.The expression of synaptic proteins,including Drebrin and NR2B,was significantly reduced,and also their colocalization.Additionally,by knocking out the Sorl1 gene in N2a cells,we found that expression of the N-methyl-D-aspartate receptor,NR2B,and cyclic adenosine monophosphate-response element binding protein was also inhibited.These findings suggest that SORL1 participates in the pathogenesis of late-onset Alzheimer s disease by regulating the N-methyl-D-aspartate receptor NR2B/cyclic adenosine monophosphate-response element binding protein signaling axis.
基金supported by the National Natural Science Foundation of China,No.81501106(to CF)Fund of Taishan Scholar Project(to CF)+1 种基金the Natural Science Foundation of Shandong Province,No.ZR2020QH106(to YH)the Medical and Health Science and Technology Development Plan of Shandong Province,No.202203010799(to QS)。
文摘Regulated cell death is a genetically determined form of programmed cell death that commonly occurs during the development of living organisms.This process plays a crucial role in modulating homeostasis and is evolutionarily conserved across a diverse range of living organisms.Ferroptosis is a classic regulatory mode of cell death.Extensive studies of regulatory cell death in Alzheimer’s disease have yielded increasing evidence that fe rroptosis is closely related to the occurrence,development,and prognosis of Alzheimer’s disease.This review summarizes the molecular mechanisms of ferroptosis and recent research advances in the role of ferro ptosis in Alzheimer’s disease.Our findings are expected to serve as a theoretical and experimental foundation for clinical research and targeted therapy for Alzheimer’s disease.
基金supported by the Uehara Memorial Foundation,JSPS under the Joint Research Program implemented in association with SNSF(JRPs),Grant No.JPJSJRP20221507 and KAKENHI Grant No.22K15711,JST FOREST Program(Grant No.JPMJFR2269,Japan)2022 iPS Academia Japan Grant,Life Science Foundation of Japan,Kato Memorial Bioscience Foundation,THE YUKIHIKO MIYATA MEMORIAL TRUST FOR ALS RESEARCH,the ICHIRO KANEHARA FOUNDATION,Takeda Science Foundation,and the YAMAGUCHI UNIVERSITY FUNDATION(all to HN).
文摘The blood-brain barrier is a unique function of the microvasculature in the brain parenchyma that maintains homeostasis in the central nervous system.Blood-brain barrier breakdown is a common pathology in various neurological diseases,such as Alzheimer’s disease,stroke,multiple sclerosis,and Parkinson’s disease.Traditionally,it has been considered a consequence of neuroinflammation or neurodegeneration,but recent advanced imaging techniques and detailed studies in animal models show that blood-brain barrier breakdown occurs early in the disease process and may precede neuronal loss.Thus,the blood-brain barrier is attractive as a potential therapeutic target for neurological diseases that lack effective therapeutics.To elucidate the molecular mechanism underlying blood-brain barrier breakdown and translate them into therapeutic strategies for neurological diseases,there is a growing demand for experimental models of human origin that allow for functional assessments.Recently,several human induced pluripotent stem cell-derived blood-brain barrier models have been established and various in vitro blood-brain barrier models using microdevices have been proposed.Especially in the Alzheimer’s disease field,the human evidence for blood-brain barrier dysfunction has been demonstrated and human induced pluripotent stem cell-derived blood-brain barrier models have suggested the putative molecular mechanisms of pathological blood-brain barrier.In this review,we summarize recent evidence of blood-brain barrier dysfunction in Alzheimer’s disease from pathological analyses,imaging studies,animal models,and stem cell sources.Additionally,we discuss the potential future directions for blood-brain barrier research.
基金the National Basic Research Development Program of China (No. 2006cb500706)the National Natural Science Foundation of China (No. 30700251)+1 种基金Shanghai Key Project of Basic Science Research (No. 04DZ14005)the Program for Outstanding Medical Academic Leader (No. LJ 06003).
文摘Inflammation has been shown to play an important role in the progression of Alzheimer's disease (AD). Recent epidemical study indicates that the incidence of AD in some populations is substantially influenced by the gene polymorphisms of the inflammation mediators. Meanwhile, an ensured risk factor, the ApoE ε4 allele is also reported to directly promote inflammation. Accordingly, it appears that an individual genetic background has partly determined his predisposition for AD by the extent of the inflammation response to the chronic stimulus by β-amyloid peptide (Aβ) deposits and other antigen stressor in the elderly. Hence we present a hypothesis that the inflammation genotypes may contribute to AD susceptibility. This may provide a new orientation both for future identification of individuals at risk and for personalized medication.
基金Supported by the National Natural Science Foundation of China,No.3206080019 and No.32060182Science and Technology Support Plan of Guizhou Province in China,No.[2020]4Y129Qiannan Prefecture Science and Technology Plan Project,No.[2022]01.
文摘BACKGROUND Alzheimer’s disease(AD)is a serious disease causing human dementia and social problems.The quality of life and prognosis of AD patients have attracted much attention.The role of chronic immune inflammation in the pathogenesis of AD is becoming more and more important.AIM To study the relationship among cognitive dysfunction,abnormal cellular immune function,neuroimaging results and poor prognostic factors in patients.METHODS A retrospective analysis of 62 hospitalized patients clinical diagnosed with AD who were admitted to our hospital from November 2015 to November 2020.Collect cognitive dysfunction performance characteristics,laboratory test data and neuroimaging data from medical records within 24 h of admission,including Mini Mental State Examination Scale score,drawing clock test,blood T lymphocyte subsets,and neutrophils and lymphocyte ratio(NLR),disturbance of consciousness,extrapyramidal symptoms,electroencephalogram(EEG)and head nucleus magnetic spectroscopy(MRS)and other data.Multivariate logistic regression analysis was used to determine independent prog-nostic factors.the modified Rankin scale(mRS)was used to determine whether the prognosis was good.The correlation between drug treatment and prognostic mRS score was tested by the rank sum test.RESULTS Univariate analysis showed that abnormal cellular immune function,extrapyramidal symptoms,obvious disturbance of consciousness,abnormal EEG,increased NLR,abnormal MRS,and complicated pneumonia were related to the poor prognosis of AD patients.Multivariate logistic regression analysis showed that the decrease in the proportion of T lym-phocytes in the blood after abnormal cellular immune function(odd ratio:2.078,95%confidence interval:1.156-3.986,P<0.05)was an independent risk factor for predicting the poor prognosis of AD.The number of days of donepezil treatment to improve cognitive function was negatively correlated with mRS score(r=0.578,P<0.05).CONCLUSION The decrease in the proportion of T lymphocytes may have predictive value for the poor prognosis of AD.It is recommended that the proportion of T lymphocytes<55%is used as the cut-off threshold for predicting the poor prog-nosis of AD.The early and continuous drug treatment is associated with a good prognosis.