In this paper, the classical Ambarzumyan’s theorem for the regular SturmLiouville problem is extended to the case in which the boundary conditions are eigenparameter dependent. Specifically, we show that if the spect...In this paper, the classical Ambarzumyan’s theorem for the regular SturmLiouville problem is extended to the case in which the boundary conditions are eigenparameter dependent. Specifically, we show that if the spectrum of the operator D 2 +q with eigenparameter dependent boundary conditions is the same as the spectrum belonging to the zero potential, then the potential function q is actually zero.展开更多
We analyse the Diophantine equation of Fermat xp yp = zp with p > 2 a prime, x, y, z positive nonzero integers. We consider the hypothetical solution (a, b, c) of previous equation. We use Fermat main divisors, Dio...We analyse the Diophantine equation of Fermat xp yp = zp with p > 2 a prime, x, y, z positive nonzero integers. We consider the hypothetical solution (a, b, c) of previous equation. We use Fermat main divisors, Diophantine remainders of (a, b, c), an asymptotic approach based on Balzano Weierstrass Analysis Theorem as tools. We construct convergent infinite sequences and establish asymptotic results including the following surprising one. If z y = 1 then there exists a tight bound N such that, for all prime exponents p > N , we have xp yp zp.展开更多
The proof by Andrew Wiles of Fermat’s Last Theorem in 1995 resolved the existence question for non-trivial solutions in integers x,y,zto the equation xn+yn=znfor n>2. There are none. Surprisingly, there are infini...The proof by Andrew Wiles of Fermat’s Last Theorem in 1995 resolved the existence question for non-trivial solutions in integers x,y,zto the equation xn+yn=znfor n>2. There are none. Surprisingly, there are infinitely many solutions if the problem is recast in terms of modular arithmetic. Over a hundred years ago Issai Schur was able to show that for any n there is always a sufficiently large prime p0such that for all primes p≥p0the congruence xn+yn≡zn(modp)has a non-trivial solution. Schur’s argument wasnon-constructive, and there is no systematic method available at present to construct specific examples for small primes. We offer a simple method for constructing all possible solutions to a large class of congruences of this type.展开更多
A naïve discussion of Fermat’s last theorem conundrum is described. The present theorem’s proof is grounded on the well-known properties of sums of powers of the sine and cosine functions, the Minkowski norm de...A naïve discussion of Fermat’s last theorem conundrum is described. The present theorem’s proof is grounded on the well-known properties of sums of powers of the sine and cosine functions, the Minkowski norm definition, and some vector-specific structures.展开更多
应变-旋转(Strain-Rotation,S-R)和分解定理为分析几何非线性问题提供了合理可靠的理论基础,但用有限元求解时会遇到大变形发生后的网格畸变问题。近年提出的虚单元法(Virtual element method,VEM)适用于一般的多边形网格,因此,该文尝...应变-旋转(Strain-Rotation,S-R)和分解定理为分析几何非线性问题提供了合理可靠的理论基础,但用有限元求解时会遇到大变形发生后的网格畸变问题。近年提出的虚单元法(Virtual element method,VEM)适用于一般的多边形网格,因此,该文尝试使用一阶虚单元求解基于S-R和分解定理的二维几何非线性问题,以克服网格畸变的影响。基于重新定义的多项式位移空间基函数,推演获得一阶虚单元分析线弹性力学问题时允许位移空间向多项式位移空间的投影表达式;按照虚单元法双线性格式的计算规则,分析处理基于更新拖带坐标法和势能率原理的增量变分方程;进而建立离散系统方程及其矩阵表达形式,并编制MATLAB求解程序;采用常规多边形网格和畸变网格,应用该文算法分析均布荷载下的悬臂梁和均匀内压下的厚壁圆筒变形。结果与已有文献和ANSYS软件的对比表明:该文算法在两种网格中均可有效执行且具备足够数值精度。总体该文算法为基于S-R和分解定理的二维几何非线性问题求解提供了一种鲁棒方法。展开更多
By using the properties of w-distances and Gerstewitz's functions, we first give a vectorial Takahashi's nonconvex minimization theorem with a w-distance. From this, we deduce a general vectorial Ekeland's variatio...By using the properties of w-distances and Gerstewitz's functions, we first give a vectorial Takahashi's nonconvex minimization theorem with a w-distance. From this, we deduce a general vectorial Ekeland's variational principle, where the objective function is from a complete metric space into a pre-ordered topological vector space and the perturbation contains a w-distance and a non-decreasing function of the objective function value. From the general vectorial variational principle, we deduce a vectorial Caristfs fixed point theorem with a w-distance. Finally we show that the above three theorems are equivalent to each other. The related known results are generalized and improved. In particular, some conditions in the theorems of [Y. Araya, Ekeland's variational principle and its equivalent theorems in vector optimization, J. Math. Anal. Appl. 346(2008), 9-16] are weakened or even completely relieved.展开更多
The Noether symmetry and the conserved quantity of a fractional Birkhoffian system are studied within the Riemann–Liouville fractional derivatives. Firstly, the fractional Birkhoff's equations and the corresponding ...The Noether symmetry and the conserved quantity of a fractional Birkhoffian system are studied within the Riemann–Liouville fractional derivatives. Firstly, the fractional Birkhoff's equations and the corresponding transversality conditions are given. Secondly, from special to general forms, Noether's theorems of a standard Birhoffian system are given, which provide an approach and theoretical basis for the further research on the Noether symmetry of the fractional Birkhoffian system. Thirdly, the invariances of the fractional Pfaffian action under a special one-parameter group of infinitesimal transformations without transforming the time and a general one-parameter group of infinitesimal transformations with transforming the time are studied, respectively, and the corresponding Noether's theorems are established. Finally, an example is given to illustrate the application of the results.展开更多
In this paper, we prove some fixed point theorems for generalized contractions in the setting of G-metric spaces. Our results extend a result of Edelstein [M. Edelstein, On fixed and periodic points under contractive ...In this paper, we prove some fixed point theorems for generalized contractions in the setting of G-metric spaces. Our results extend a result of Edelstein [M. Edelstein, On fixed and periodic points under contractive mappings, J. London Math. Soc., 37 (1962), 74-79] and a result of Suzuki [T. Suzuki, A new type of fixed point theorem in metric spaces, Nonlinear Anal., 71 (2009), 5313-5317]. We prove, also, a fixed point theorem in the setting of G-cone metric spaces.展开更多
We focus on Mei symmetry for time scales nonshifted mechanical systems within Lagrangian framework and its resulting new conserved quantities.Firstly,the dynamic equations of time scales nonshifted holonomic systems a...We focus on Mei symmetry for time scales nonshifted mechanical systems within Lagrangian framework and its resulting new conserved quantities.Firstly,the dynamic equations of time scales nonshifted holonomic systems and time scales nonshifted nonholonomic systems are derived from the generalized Hamilton’s principle.Secondly,the definitions of Mei symmetry on time scales are given and its criterions are deduced.Finally,Mei’s symmetry theorems for time scales nonshifted holonomic conservative systems,time scales nonshifted holonomic nonconservative systems and time scales nonshifted nonholonomic systems are established and proved,and new conserved quantities of above systems are obtained.Results are illustrated with two examples.展开更多
This paper studies the conditional version of Kolmogorov’s three-series theorem, and gets a new extention form of the conditional version. The results here present us an answer to the question when (or where) the con...This paper studies the conditional version of Kolmogorov’s three-series theorem, and gets a new extention form of the conditional version. The results here present us an answer to the question when (or where) the conditional version also provide necessary conditions for convergence in dependent cases. Furthermore, some new sufficient conditions are obtained.展开更多
Recently, the notion of an S-metric space is defined and extensively studied as a generalization of a metric space. In this paper, we define the notion of the S∞-space and prove its completeness. We obtain a new gene...Recently, the notion of an S-metric space is defined and extensively studied as a generalization of a metric space. In this paper, we define the notion of the S∞-space and prove its completeness. We obtain a new generalization of the classical "Picard Theorem".展开更多
For a bounded operator T acting on an infinite dimensional separable Hilbert space H, we prove the following assertions: (i) If T or T* ∈ SC, then generalized a- Browder's theorem holds for f(T) for every f ∈...For a bounded operator T acting on an infinite dimensional separable Hilbert space H, we prove the following assertions: (i) If T or T* ∈ SC, then generalized a- Browder's theorem holds for f(T) for every f ∈ Hol(σ(T)). (ii) If T or T* ∈ HC has topological uniform descent at all λ ∈ iso(a(T)), then generalized Weyl's theorem holds for f(T) for every f ∈ Hol(σ(T)). (iii) If T ∈ HC has topological uniform descent at all λ ∈(T), then T satisfies generalized Weyl's theorem. (iv) Let T ∈ HC. If T satisfies the growth condition Gd(d 〉 1), then generalized Weyl's theorem holds for f(T) for every f ∈ Hol(σ(T)). (v) If T ∈ SC, then, f(OssF+ (T)) = aSBF+ (f(T)) for all f ∈ Hol(σ(T)). (vi) Let T be a-isoloid such that T* ∈ HC. If T - AI has finite ascent at every A ∈ Eσ(T) and if F is of finite rank on Hsuch that TF = FT, then T ∈ F obeys generalized a-Weyl's theorem.展开更多
This paper focuses on the Noether symmetries and the conserved quantities for both holonomic and nonholonomic systems based on a new non-conservative dynamical model introduced by E1-Nabulsi. First, the E1-Nabulsi dyn...This paper focuses on the Noether symmetries and the conserved quantities for both holonomic and nonholonomic systems based on a new non-conservative dynamical model introduced by E1-Nabulsi. First, the E1-Nabulsi dynamical model which is based on a fractional integral extended by periodic laws is introduced, and E1-Nabulsi-Hamilton's canoni- cal equations for non-conservative Hamilton system with holonomic or nonholonomic constraints are established. Second, the definitions and criteria of E1-Nabulsi-Noether symmetrical transformations and quasi-symmetrical transformations are presented in terms of the invariance of E1-Nabulsi-Hamilton action under the infinitesimal transformations of the group. Fi- nally, Noether's theorems for the non-conservative Hamilton system under the E1-Nabulsi dynamical system are established, which reveal the relationship between the Noether symmetry and the conserved quantity of the system.展开更多
A radial function can be expressed by its generator through The positive definite of the function plays an important rote in the radial basis interpolation. We can naturally use Bochner's Theorem to check if is po...A radial function can be expressed by its generator through The positive definite of the function plays an important rote in the radial basis interpolation. We can naturally use Bochner's Theorem to check if is positive definite. This requires however a n-dhnensiotial Fourier transformation and it is not very easy to calculate. Furthermore in a lot of cases we will use for spaces of various dimensions too, then for every fixed n we need do the Fourier transformation once to check if the function is positive definite in the n-di-mensional space. The completely monotone function:, which is discussed in [4] is positive definite for arbitrary space dimensions. With this technique tve can very easily characterize the positive definite, of a radial function through its generator. Unfortunately there is only a very small subset of radial function which is completely monotone. Thus this criterion excluded a lot of interesting functions such as compactly supported radial function, whcih are very useful in application. Can we find some conditions (as the completely monotone function) only for the \-dimen simial Fourier transform of the generator epto characterize a radial function 9, which is positivedefinite in n-dimensional (fixed n) spacel In this paper we defined a kind of incompletelymonotone function of order a, for a= 0,,1/2 ,1,3/2,(we denote the function class by ICM) ,in this sence a normal positvie function is in ICM a positive monotone decreasing function is inICM and a positive monotone decreasing and convex function is in ICM2- Based on this definition we get a generalized Bochner's Theorem for radial function-. If dimensional Fouriertransform of the generator of a radial function can be written as , then corre-spending radial function (x) is positive definite as a n-variate function iff F is an incomplete-ly monotone function of order a= (n- 1 )/2 (or simply In this way we have characterized the positive definite of the radial function as a n-vari-ate function through its generator in the sense of the Bocher's Theorem.展开更多
This paper proves a power balance theorem of frequency domain. It becomes another circuit law concerning power conservation after Tellegen’s theorem. Moreover the universality and importance worth of application of t...This paper proves a power balance theorem of frequency domain. It becomes another circuit law concerning power conservation after Tellegen’s theorem. Moreover the universality and importance worth of application of the theorem are introduced in this paper. Various calculation of frequency domain in nonlinear circuit possess fixed intrinsic rule. There exists the mutual influence of nonlinear coupling among various harmonics. But every harmonic component must observe individually KCL, KVL and conservation of complex power in nonlinear circuit. It is a lossless network that the nonlinear conservative system with excited source has not dissipative element. The theorem proved by this paper can directly be used to find the main harmonic solutions of the lossless circuit. The results of solution are consistent with the balancing condition of reactive power, and accord with the traditional harmonic analysis method. This paper demonstrates that the lossless network can universally produce chaos. The phase portrait is related closely to the initial conditions, thus it is not an attractor. Furthermore it also reveals the difference between the attractiveness and boundedness for chaos.展开更多
Using series iteration techniques identities and apply each of these identities in we derive a number of general double series order to deduce several hypergeometric reduction formulas involving the Srivastava-Daoust ...Using series iteration techniques identities and apply each of these identities in we derive a number of general double series order to deduce several hypergeometric reduction formulas involving the Srivastava-Daoust double hypergeometric function. The results presented in this article are based essentially upon the hypergeometric summation theorems of Kummer and Dixon.展开更多
Noether theorem is applied to a variable order fractional multiscale mechano-electrophysiological model of neuron membrane dynamics.The variable orders fractional Lagrange equation of a multiscale mechano-electrophysi...Noether theorem is applied to a variable order fractional multiscale mechano-electrophysiological model of neuron membrane dynamics.The variable orders fractional Lagrange equation of a multiscale mechano-electrophysiological model of neuron membrane dynamics is given.The variable orders fractional Noether symmetry criterion and Noether conserved quantities are given.The forms of variable orders fractional Noether conserved quantities corresponding to Noether symmetry generators solutions of the model under different conditions are discussed in detail,and it is found that the expressions of variable orders fractional Noether conserved quantities are closely dependent on the external nonconservative forces and material parameters of the neuron.展开更多
Internal bond (IB) strength is one of the most important me- chanical properties that indicate particleboard quality. The aim of this study was to find a simple regression model that considers the most important par...Internal bond (IB) strength is one of the most important me- chanical properties that indicate particleboard quality. The aim of this study was to find a simple regression model that considers the most important parameters that can influence on IB strength. In this study, IB strength was predicted by three kinds of equations (linear, quadratic, and exponential) that were based on the percentage of adhesive (8%, 9.5%, and 11%), particle size (+5, -5 +8, -8 12, and -12 mesh), and density (0.65, 0.7, and 0.75 g/cm3). Our analysis of the results (using SHAZAM 9 software) showed that the exponential function best fitted the experi- mental data and predicted the IB strength with 18~,/0 error. In order de- crease the error percentage, the Buckingham Pi theorem was used to build regression models for predicting IB strength based on particle size,展开更多
基金supported by Natural Science Foun- dation of Jiangsu Province of China (BK 2010489)the Outstanding Plan-Zijin Star Foundation of Nanjing University of Science and Technology (AB 41366)+1 种基金NUST Research Funding (AE88787)the National Natural Science Foundation of China (11071119)
文摘In this paper, the classical Ambarzumyan’s theorem for the regular SturmLiouville problem is extended to the case in which the boundary conditions are eigenparameter dependent. Specifically, we show that if the spectrum of the operator D 2 +q with eigenparameter dependent boundary conditions is the same as the spectrum belonging to the zero potential, then the potential function q is actually zero.
文摘We analyse the Diophantine equation of Fermat xp yp = zp with p > 2 a prime, x, y, z positive nonzero integers. We consider the hypothetical solution (a, b, c) of previous equation. We use Fermat main divisors, Diophantine remainders of (a, b, c), an asymptotic approach based on Balzano Weierstrass Analysis Theorem as tools. We construct convergent infinite sequences and establish asymptotic results including the following surprising one. If z y = 1 then there exists a tight bound N such that, for all prime exponents p > N , we have xp yp zp.
文摘The proof by Andrew Wiles of Fermat’s Last Theorem in 1995 resolved the existence question for non-trivial solutions in integers x,y,zto the equation xn+yn=znfor n>2. There are none. Surprisingly, there are infinitely many solutions if the problem is recast in terms of modular arithmetic. Over a hundred years ago Issai Schur was able to show that for any n there is always a sufficiently large prime p0such that for all primes p≥p0the congruence xn+yn≡zn(modp)has a non-trivial solution. Schur’s argument wasnon-constructive, and there is no systematic method available at present to construct specific examples for small primes. We offer a simple method for constructing all possible solutions to a large class of congruences of this type.
文摘A naïve discussion of Fermat’s last theorem conundrum is described. The present theorem’s proof is grounded on the well-known properties of sums of powers of the sine and cosine functions, the Minkowski norm definition, and some vector-specific structures.
文摘应变-旋转(Strain-Rotation,S-R)和分解定理为分析几何非线性问题提供了合理可靠的理论基础,但用有限元求解时会遇到大变形发生后的网格畸变问题。近年提出的虚单元法(Virtual element method,VEM)适用于一般的多边形网格,因此,该文尝试使用一阶虚单元求解基于S-R和分解定理的二维几何非线性问题,以克服网格畸变的影响。基于重新定义的多项式位移空间基函数,推演获得一阶虚单元分析线弹性力学问题时允许位移空间向多项式位移空间的投影表达式;按照虚单元法双线性格式的计算规则,分析处理基于更新拖带坐标法和势能率原理的增量变分方程;进而建立离散系统方程及其矩阵表达形式,并编制MATLAB求解程序;采用常规多边形网格和畸变网格,应用该文算法分析均布荷载下的悬臂梁和均匀内压下的厚壁圆筒变形。结果与已有文献和ANSYS软件的对比表明:该文算法在两种网格中均可有效执行且具备足够数值精度。总体该文算法为基于S-R和分解定理的二维几何非线性问题求解提供了一种鲁棒方法。
基金Supported by the National Natural Science Foundation of China(10871141)
文摘By using the properties of w-distances and Gerstewitz's functions, we first give a vectorial Takahashi's nonconvex minimization theorem with a w-distance. From this, we deduce a general vectorial Ekeland's variational principle, where the objective function is from a complete metric space into a pre-ordered topological vector space and the perturbation contains a w-distance and a non-decreasing function of the objective function value. From the general vectorial variational principle, we deduce a vectorial Caristfs fixed point theorem with a w-distance. Finally we show that the above three theorems are equivalent to each other. The related known results are generalized and improved. In particular, some conditions in the theorems of [Y. Araya, Ekeland's variational principle and its equivalent theorems in vector optimization, J. Math. Anal. Appl. 346(2008), 9-16] are weakened or even completely relieved.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.10972151 and 11272227the Innovation Program for Postgraduate in Higher Education Institutions of Jiangsu Province,China(Grant No.CXZZ11 0949)
文摘The Noether symmetry and the conserved quantity of a fractional Birkhoffian system are studied within the Riemann–Liouville fractional derivatives. Firstly, the fractional Birkhoff's equations and the corresponding transversality conditions are given. Secondly, from special to general forms, Noether's theorems of a standard Birhoffian system are given, which provide an approach and theoretical basis for the further research on the Noether symmetry of the fractional Birkhoffian system. Thirdly, the invariances of the fractional Pfaffian action under a special one-parameter group of infinitesimal transformations without transforming the time and a general one-parameter group of infinitesimal transformations with transforming the time are studied, respectively, and the corresponding Noether's theorems are established. Finally, an example is given to illustrate the application of the results.
基金supported by Università degli Studi di Palermo (Local University Project ex 60%)
文摘In this paper, we prove some fixed point theorems for generalized contractions in the setting of G-metric spaces. Our results extend a result of Edelstein [M. Edelstein, On fixed and periodic points under contractive mappings, J. London Math. Soc., 37 (1962), 74-79] and a result of Suzuki [T. Suzuki, A new type of fixed point theorem in metric spaces, Nonlinear Anal., 71 (2009), 5313-5317]. We prove, also, a fixed point theorem in the setting of G-cone metric spaces.
基金supported by the National Natural Science Foundation of China(Grants 11972241 and 11572212)the Natural Science Foundation of Jiangsu Province of China(Grant BK20191454).
文摘We focus on Mei symmetry for time scales nonshifted mechanical systems within Lagrangian framework and its resulting new conserved quantities.Firstly,the dynamic equations of time scales nonshifted holonomic systems and time scales nonshifted nonholonomic systems are derived from the generalized Hamilton’s principle.Secondly,the definitions of Mei symmetry on time scales are given and its criterions are deduced.Finally,Mei’s symmetry theorems for time scales nonshifted holonomic conservative systems,time scales nonshifted holonomic nonconservative systems and time scales nonshifted nonholonomic systems are established and proved,and new conserved quantities of above systems are obtained.Results are illustrated with two examples.
文摘This paper studies the conditional version of Kolmogorov’s three-series theorem, and gets a new extention form of the conditional version. The results here present us an answer to the question when (or where) the conditional version also provide necessary conditions for convergence in dependent cases. Furthermore, some new sufficient conditions are obtained.
文摘Recently, the notion of an S-metric space is defined and extensively studied as a generalization of a metric space. In this paper, we define the notion of the S∞-space and prove its completeness. We obtain a new generalization of the classical "Picard Theorem".
文摘For a bounded operator T acting on an infinite dimensional separable Hilbert space H, we prove the following assertions: (i) If T or T* ∈ SC, then generalized a- Browder's theorem holds for f(T) for every f ∈ Hol(σ(T)). (ii) If T or T* ∈ HC has topological uniform descent at all λ ∈ iso(a(T)), then generalized Weyl's theorem holds for f(T) for every f ∈ Hol(σ(T)). (iii) If T ∈ HC has topological uniform descent at all λ ∈(T), then T satisfies generalized Weyl's theorem. (iv) Let T ∈ HC. If T satisfies the growth condition Gd(d 〉 1), then generalized Weyl's theorem holds for f(T) for every f ∈ Hol(σ(T)). (v) If T ∈ SC, then, f(OssF+ (T)) = aSBF+ (f(T)) for all f ∈ Hol(σ(T)). (vi) Let T be a-isoloid such that T* ∈ HC. If T - AI has finite ascent at every A ∈ Eσ(T) and if F is of finite rank on Hsuch that TF = FT, then T ∈ F obeys generalized a-Weyl's theorem.
基金supported by the National Natural Science Foundation of China(Grant Nos.10972151 and 11272227)the Innovation Program for Postgraduate in Higher Education Institutions of Jiangsu Province,China(Grant No.CXLX11_0961)
文摘This paper focuses on the Noether symmetries and the conserved quantities for both holonomic and nonholonomic systems based on a new non-conservative dynamical model introduced by E1-Nabulsi. First, the E1-Nabulsi dynamical model which is based on a fractional integral extended by periodic laws is introduced, and E1-Nabulsi-Hamilton's canoni- cal equations for non-conservative Hamilton system with holonomic or nonholonomic constraints are established. Second, the definitions and criteria of E1-Nabulsi-Noether symmetrical transformations and quasi-symmetrical transformations are presented in terms of the invariance of E1-Nabulsi-Hamilton action under the infinitesimal transformations of the group. Fi- nally, Noether's theorems for the non-conservative Hamilton system under the E1-Nabulsi dynamical system are established, which reveal the relationship between the Noether symmetry and the conserved quantity of the system.
基金The Project is Supported by National Nature Science Foundation of China
文摘A radial function can be expressed by its generator through The positive definite of the function plays an important rote in the radial basis interpolation. We can naturally use Bochner's Theorem to check if is positive definite. This requires however a n-dhnensiotial Fourier transformation and it is not very easy to calculate. Furthermore in a lot of cases we will use for spaces of various dimensions too, then for every fixed n we need do the Fourier transformation once to check if the function is positive definite in the n-di-mensional space. The completely monotone function:, which is discussed in [4] is positive definite for arbitrary space dimensions. With this technique tve can very easily characterize the positive definite, of a radial function through its generator. Unfortunately there is only a very small subset of radial function which is completely monotone. Thus this criterion excluded a lot of interesting functions such as compactly supported radial function, whcih are very useful in application. Can we find some conditions (as the completely monotone function) only for the \-dimen simial Fourier transform of the generator epto characterize a radial function 9, which is positivedefinite in n-dimensional (fixed n) spacel In this paper we defined a kind of incompletelymonotone function of order a, for a= 0,,1/2 ,1,3/2,(we denote the function class by ICM) ,in this sence a normal positvie function is in ICM a positive monotone decreasing function is inICM and a positive monotone decreasing and convex function is in ICM2- Based on this definition we get a generalized Bochner's Theorem for radial function-. If dimensional Fouriertransform of the generator of a radial function can be written as , then corre-spending radial function (x) is positive definite as a n-variate function iff F is an incomplete-ly monotone function of order a= (n- 1 )/2 (or simply In this way we have characterized the positive definite of the radial function as a n-vari-ate function through its generator in the sense of the Bocher's Theorem.
文摘This paper proves a power balance theorem of frequency domain. It becomes another circuit law concerning power conservation after Tellegen’s theorem. Moreover the universality and importance worth of application of the theorem are introduced in this paper. Various calculation of frequency domain in nonlinear circuit possess fixed intrinsic rule. There exists the mutual influence of nonlinear coupling among various harmonics. But every harmonic component must observe individually KCL, KVL and conservation of complex power in nonlinear circuit. It is a lossless network that the nonlinear conservative system with excited source has not dissipative element. The theorem proved by this paper can directly be used to find the main harmonic solutions of the lossless circuit. The results of solution are consistent with the balancing condition of reactive power, and accord with the traditional harmonic analysis method. This paper demonstrates that the lossless network can universally produce chaos. The phase portrait is related closely to the initial conditions, thus it is not an attractor. Furthermore it also reveals the difference between the attractiveness and boundedness for chaos.
文摘Using series iteration techniques identities and apply each of these identities in we derive a number of general double series order to deduce several hypergeometric reduction formulas involving the Srivastava-Daoust double hypergeometric function. The results presented in this article are based essentially upon the hypergeometric summation theorems of Kummer and Dixon.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12272148 and 11772141).
文摘Noether theorem is applied to a variable order fractional multiscale mechano-electrophysiological model of neuron membrane dynamics.The variable orders fractional Lagrange equation of a multiscale mechano-electrophysiological model of neuron membrane dynamics is given.The variable orders fractional Noether symmetry criterion and Noether conserved quantities are given.The forms of variable orders fractional Noether conserved quantities corresponding to Noether symmetry generators solutions of the model under different conditions are discussed in detail,and it is found that the expressions of variable orders fractional Noether conserved quantities are closely dependent on the external nonconservative forces and material parameters of the neuron.
文摘Internal bond (IB) strength is one of the most important me- chanical properties that indicate particleboard quality. The aim of this study was to find a simple regression model that considers the most important parameters that can influence on IB strength. In this study, IB strength was predicted by three kinds of equations (linear, quadratic, and exponential) that were based on the percentage of adhesive (8%, 9.5%, and 11%), particle size (+5, -5 +8, -8 12, and -12 mesh), and density (0.65, 0.7, and 0.75 g/cm3). Our analysis of the results (using SHAZAM 9 software) showed that the exponential function best fitted the experi- mental data and predicted the IB strength with 18~,/0 error. In order de- crease the error percentage, the Buckingham Pi theorem was used to build regression models for predicting IB strength based on particle size,