We study the topological complexities of relative entropy zero extensions acted upon by countable-infinite amenable groups.First,for a given Følner sequence,we define the relative entropy dimensions and the dimen...We study the topological complexities of relative entropy zero extensions acted upon by countable-infinite amenable groups.First,for a given Følner sequence,we define the relative entropy dimensions and the dimensions of the relative entropy generating sets to characterize the sub-exponential growth of the relative topological complexity.we also investigate the relations among these.Second,we introduce the notion of a relative dimension set.Moreover,using the method,we discuss the disjointness between the relative entropy zero extensions via the relative dimension sets of two extensions,which says that if the relative dimension sets of two extensions are different,then the extensions are disjoint.展开更多
In this paper,we study the proximal relation,regionally proximal relation and Banach proximal relation of a topological dynamical system for amenable group actions.A useful tool is the support of a topological dynamic...In this paper,we study the proximal relation,regionally proximal relation and Banach proximal relation of a topological dynamical system for amenable group actions.A useful tool is the support of a topological dynamical system which is used to study the structure of the Banach proximal relation,and we prove that above three relations all coincide on a Banach mean equicontinuous system generated by an amenable group action.展开更多
基金supported by the NNSF of China (12201120,12171233)the Educational Research Project for Young and Middle-aged Teachers of Fujian Province (JAT200045).
文摘We study the topological complexities of relative entropy zero extensions acted upon by countable-infinite amenable groups.First,for a given Følner sequence,we define the relative entropy dimensions and the dimensions of the relative entropy generating sets to characterize the sub-exponential growth of the relative topological complexity.we also investigate the relations among these.Second,we introduce the notion of a relative dimension set.Moreover,using the method,we discuss the disjointness between the relative entropy zero extensions via the relative dimension sets of two extensions,which says that if the relative dimension sets of two extensions are different,then the extensions are disjoint.
基金supported by NSF of China(11671057)NSF of Chongqing(cstc2020jcyj-msxm X0694)the Fundamental Research Funds for the Central Universities(2018CDQYST0023)。
文摘In this paper,we study the proximal relation,regionally proximal relation and Banach proximal relation of a topological dynamical system for amenable group actions.A useful tool is the support of a topological dynamical system which is used to study the structure of the Banach proximal relation,and we prove that above three relations all coincide on a Banach mean equicontinuous system generated by an amenable group action.