期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
A Light-Weight Deep Learning-Based Architecture for Sign Language Classification 被引量:1
1
作者 M.Daniel Nareshkumar B.Jaison 《Intelligent Automation & Soft Computing》 SCIE 2023年第3期3501-3515,共15页
With advancements in computing powers and the overall quality of images captured on everyday cameras,a much wider range of possibilities has opened in various scenarios.This fact has several implications for deaf and ... With advancements in computing powers and the overall quality of images captured on everyday cameras,a much wider range of possibilities has opened in various scenarios.This fact has several implications for deaf and dumb people as they have a chance to communicate with a greater number of people much easier.More than ever before,there is a plethora of info about sign language usage in the real world.Sign languages,and by extension the datasets available,are of two forms,isolated sign language and continuous sign language.The main difference between the two types is that in isolated sign language,the hand signs cover individual letters of the alphabet.In continuous sign language,entire words’hand signs are used.This paper will explore a novel deep learning architecture that will use recently published large pre-trained image models to quickly and accurately recognize the alphabets in the American Sign Language(ASL).The study will focus on isolated sign language to demonstrate that it is possible to achieve a high level of classification accuracy on the data,thereby showing that interpreters can be implemented in the real world.The newly proposed Mobile-NetV2 architecture serves as the backbone of this study.It is designed to run on end devices like mobile phones and infer signals(what does it infer)from images in a relatively short amount of time.With the proposed architecture in this paper,the classification accuracy of 98.77%in the Indian Sign Language(ISL)and American Sign Language(ASL)is achieved,outperforming the existing state-of-the-art systems. 展开更多
关键词 Deep learning machine learning CLASSIFICATION filters american sign language
下载PDF
ASL Recognition by the Layered Learning Model Using Clustered Groups
2
作者 Jungsoo Shin Jaehee Jung 《Computer Systems Science & Engineering》 SCIE EI 2023年第4期51-68,共18页
American Sign Language(ASL)images can be used as a communication tool by determining numbers and letters using the shape of the fingers.Particularly,ASL can have an key role in communication for hearing-impaired perso... American Sign Language(ASL)images can be used as a communication tool by determining numbers and letters using the shape of the fingers.Particularly,ASL can have an key role in communication for hearing-impaired persons and conveying information to other persons,because sign language is their only channel of expression.Representative ASL recognition methods primarily adopt images,sensors,and pose-based recognition techniques,and employ various gestures together with hand-shapes.This study briefly reviews these attempts at ASL recognition and provides an improved ASL classification model that attempts to develop a deep learning method with meta-layers.In the proposed model,the collected ASL images were clustered based on similarities in shape,and clustered group classification was first performed,followed by reclassification within the group.The experiments were conducted with various groups using different learning layers to improve the accuracy of individual image recognition.After selecting the optimized group,we proposed a meta-layered learning model with the highest recognition rate using a deep learning method of image processing.The proposed model exhibited an improved performance compared with the general classification model. 展开更多
关键词 american sign language deep learning RECOGNITION CNN ResNet clustered group
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部