Amide ionic liquids (MLs)/L-proline synergistic catalyzed Mannich reactions of isovaleraldehyde, methyl ketones, and aromatic amines were carried out in moderate to high yields ( up to 96% ) and high stereo select...Amide ionic liquids (MLs)/L-proline synergistic catalyzed Mannich reactions of isovaleraldehyde, methyl ketones, and aromatic amines were carried out in moderate to high yields ( up to 96% ) and high stereo selectivities ( 〉99% e. e. ). The products were easily isolated by extraction; and the catalyst system was readily recycled at least thrice without significant loss of efficiency. The scope of the substrates was studied and the interpretation of the manifest improvement of the reaction rates and enantio-selectivity of the novel catalyst system was speculated.展开更多
A series of novel aromatic poly ( amide imide)s containing phthalazinone moieties were prepared from 2-(4-aminophenyl)-4-[3-methyl-4-(4-aminophenoxy)-2,3-phthalazinone-1], a novel diamine 1 with four diimide-dicarboxy...A series of novel aromatic poly ( amide imide)s containing phthalazinone moieties were prepared from 2-(4-aminophenyl)-4-[3-methyl-4-(4-aminophenoxy)-2,3-phthalazinone-1], a novel diamine 1 with four diimide-dicarboxylic acids by Yamazaki phosphorylation method with the inherent viscosity of 0.36~0.65 dL/g. These polymers had high glass transition temperatures above 300C and they lost 10% weight between 426~475C in N2. The structure of diamine 1 and the polymers was confirmed by IR, 1H NMR and MS. The obtained polymers were readily soluble in polar solvents such as NMP, m-cresol etc. and easily cast into tough, flexible films. The X-ray indicated that they are all amorphous.展开更多
The direct polymerization of an unsymmetrical kink non-coplanar heterocyclic diamine (1) with various aromatic bis(trimellitimide)s (2a-e) using triphenyl phosphite and pyridine as condensing agents could generate a s...The direct polymerization of an unsymmetrical kink non-coplanar heterocyclic diamine (1) with various aromatic bis(trimellitimide)s (2a-e) using triphenyl phosphite and pyridine as condensing agents could generate a series of new aromatic poly(amide imide)s (3a-e) containing the kink non-coplanar phthalazinone heterocyclic units in the polymer main chains with inherent viscosities of 0.58-0.66 dL/g. The polymers are readily soluble in a variety of solvents such as N,N- dimethylformamide, N,N-dimethylacetamide, dimethyl sulfoxide, N-methyl-2-pyrrolidinone, pyridine and m-cresol and can be cast to form flexible and tough films. The glass transition temperatures of polymers (Tg) are in the range of 301-327°C, and the temperatures for 5% weight loss in nitrogen are in the range of 498-521 'C.展开更多
The synthesis and characterization of a series of novel poly(aryl amide imide)s based on o diphenyltrimellitic anhydride are described.The poly(aryl amide imide)s having inherent viscosities of 0.39-1.43dL/g in N m...The synthesis and characterization of a series of novel poly(aryl amide imide)s based on o diphenyltrimellitic anhydride are described.The poly(aryl amide imide)s having inherent viscosities of 0.39-1.43dL/g in N methyl 2 pyrrolidinone at 30℃,were prepared by polymerization with aromatic diamines in N,N-dimethylacetamide and subsequent chemical imidization.All the polymers were amorphous,readily soluble in aprotic polar solvents such as DMAC,NMP,DMF,DMSO,and m cresol,and could be cast to form flexible and tough films.The glass trsanition temperatures were in the range of 284-336℃,and the temperatures for 5% weight loss in nitrogen were above 468℃.展开更多
(S)-(+)-2,2-dimethylcyclopropane carbox amide is a key intermediate of Cilastatin, an inhibitor of dehydropeptidase-I. Its corresponding solid-liquid equilibrium data will provide essential support for industrial...(S)-(+)-2,2-dimethylcyclopropane carbox amide is a key intermediate of Cilastatin, an inhibitor of dehydropeptidase-I. Its corresponding solid-liquid equilibrium data will provide essential support for industrial design and further theoretical studies. The solubilities of (S)-(+)-2,2-dimethylcyclopropane carbox amide in toluene, dichloromethane, trichloromethane, ethyl acetate, ethanol and pure water at different temperature were measured using the synthetic method by a laser monitoring observation technique. The solubility data were correlated with the modified Apelblat equation.The calculated values were good in agreement with the experimental values.展开更多
(S)-(+)-2,2-dimethylcyclopropane carbox amide is a key intermediate of Cilastatin, an inhibitor of de- hydropeptidase-I. Its corresponding solid-liquid equilibrium data will provide essential support for industrial de...(S)-(+)-2,2-dimethylcyclopropane carbox amide is a key intermediate of Cilastatin, an inhibitor of de- hydropeptidase-I. Its corresponding solid-liquid equilibrium data will provide essential support for industrial design and further theoretical studies. The solubilities of (S)-(+)-2,2-dimethylcyclopropane carbox amide in toluene, di- chloromethane, trichloromethane, ethyl acetate, ethanol and pure water at different temperature were measured us- ing the synthetic method by a laser monitoring observation technique. The solubility data were correlated with the modified Apelblat equation. The calculated values were good in agreement with the experimental values.展开更多
An efficient route for the palladium-catalyzed reductive aminocarbonylation of olefins with nitroarenes was developed using carbon monoxide(CO)as both reductant and carbonyl source,which enables facile access to amide...An efficient route for the palladium-catalyzed reductive aminocarbonylation of olefins with nitroarenes was developed using carbon monoxide(CO)as both reductant and carbonyl source,which enables facile access to amides with excellent regioselectivity and broad substrate scope.It is found that the counter anions of the Pd catalyst precursors significantly affect the reaction chemoselectivity and amide regioselectivity.Branched amides were mainly obtained with K2PdCl4 as the metal catalyst,and phosphine ligands had no influence on the regioselectivity but affected the catalytic reactivity.However,phosphine ligands had significant effects on aminocarbonylation regioselectivity when Pd(CH3CN)4(OTf)2 was used;monodentate phosphines tended to form branched amides,and bidentate phosphines mainly formed linear amides.Trapping experiments,primary kinetic studies,and control reactions with all possible N-species reduced from nitroarene indicated that the catalytic synthesis of branched and linear amides produced nitrene(further converted to enamide)and aniline,respectively,different from the previous ligand-controlled regioselective synthesis of amides via the aminocarbonylation of olefins with amines.Furthermore,the proposed synthesis route could be applied in the synthesis of gram-scale propanil under mild conditions.展开更多
The pursuit of incorporating eco-friendly reinforcing agents in polymer composites has accentuated the exploration of various natural biomass-derived materials.The burgeoning environmental crisis spurred by the discha...The pursuit of incorporating eco-friendly reinforcing agents in polymer composites has accentuated the exploration of various natural biomass-derived materials.The burgeoning environmental crisis spurred by the discharge of synthetic dyes into wastewater has catalyzed the search for effective and sustainable treatment technologies.Among the various sorbent materials explored,biochar,being renewable,has gained prominence due to its excellent adsorption properties and environmental sustainability.It has also emerged as a focal point for its potential to replace other conventional reinforcing agents,viz.,fumed silica,aluminum oxide,treated clays,etc.This study introduces a novel class of polymer nanocomposites comprising of lignin-based biochar particles and poly(ester amide urethane)matrix via a feasible method.The structural evaluation of these nanocomposites was accomplished using Fourier-transform infrared spectroscopy,X-ray photoelectron spectroscopy,and powder X-ray diffraction.The polymer nanocomposites exhibited superior mechanical properties with an increment in tensile strength factor by 45%in comparison to its pristine matrix,along with an excellent toughness value of 90.22 MJm^(−3)at a low loading amount of only 1 wt%.The composites showed excellent improvement in thermal properties with a sharp rise in the glass transition temperature(Tg)value from−28.15℃to 84℃,while also championing sustainability through inherent biodegradability attributes.Beyond their structural prowess,these polymer nanocomposites demonstrated excellent potential as adsorbents,displaying efficient removal of malachite green and tartrazine dyes from aqueous systems with a removal efficiency of 87.25%and 73.98%,respectively.The kinetics study revealed the pseudo second order model to be the precision tool to assess the dye removal study.Complementing this,the Langmuir adsorption isotherm provided a framework to assess the sorption features of the polymer nanocomposites.Overall,these renewable biochar integrated polymer matrices boast remarkable recovery capabilities up to seven cycles of usage with an excellent dye recovery percentage of 95.21%for the last cycle,thereby defining sustainability as well as economic feasibility.展开更多
The preparation of bioactive derivatives from the renewable natural product pinene is a hot research topic in the deep processing and utilization of pinene.In this study,β-pinene was used to develop novel molecules a...The preparation of bioactive derivatives from the renewable natural product pinene is a hot research topic in the deep processing and utilization of pinene.In this study,β-pinene was used to develop novel molecules as a promising new precursor of insecticide.A series of amide-containing derivatives ofβ-pinene were synthesized and characterized.The insecticidal activities of these derivatives against Mythimna separate and Semiaphis heraclei were tested.The structure characterization results showed that the characterization data of amide-containing derivatives were in full agreement with their proposed structures.The insecticidal activities evaluation results indicated that amide-containing derivatives exhibited weak insecticidal activity against Mythimna separate,but exhibited moderate to good insecticidal activity against Semiaphis heraclei.After testing for 72 h,the corrected mortality against Semiaphis heraclei of compounds 5c,5e,5f,5 h,5j,and 5 m was 100%at 1000 mg/L.The structure-activity relationship analysis results showed that the introduction of an amide group into the structure of derivatives improved their insecticidal activity against Semiaphis heraclei.Meanwhile,the amide-containing derivatives containing the F and NO_(2) substituted benzene ring might improve their insecticidal activity against Semiaphis heraclei.This study will be helpful for the high value-added utilization of the natural renewable resourceβ-pinene and the development of novel insecticides.展开更多
The methanolysis of amides,which is widely employed in the synthetic organic chemistry,hardly occurs under mild conditions.To safely and controllably intensify the methanolysis reaction with hightemperature and high-p...The methanolysis of amides,which is widely employed in the synthetic organic chemistry,hardly occurs under mild conditions.To safely and controllably intensify the methanolysis reaction with hightemperature and high-pressure environment,a continuous tubular reaction technology is developed,whose space-time yield is over twice of that of the conventional batch reaction.The methanolysis of acetanilide is selected as the representative reaction,and the influences of temperature,pressure,reactant and catalyst concentration,and residence time on the reaction performances are systematically investigated.Taking the advantages of precise temperature and reaction time control by the tubular reactor,the kinetics of acetanilide methanolysis are determined and compared to the kinetics of acetanilide hydrolysis reaction.The tubular reaction method is also employed to test a variety of other amides to show the effects of substituents,steric hindrance,and alkalinity on the reaction rate of methanolysis.展开更多
Three new amide derivatives(alteralkaloids A-C,1-3)and three known alkaloids(4-6)were afforded after phytochemical investigation of fungus Alternaria brassicicola.The structures of these compounds were confirmed by NM...Three new amide derivatives(alteralkaloids A-C,1-3)and three known alkaloids(4-6)were afforded after phytochemical investigation of fungus Alternaria brassicicola.The structures of these compounds were confirmed by NMR spectroscopic and HRESIMS data.Furthermore,the absolute configuration of 1 was determined using the single-crystal X-ray diffraction analysis.Compounds 1-3 belong to a class of amide derivatives that have not been found in nature before,sharing the same characteristic signals of the butyl moiety and amide group.These isolated compounds mentioned above were tested for the cytotoxic activity.展开更多
Amide proton transfer (APT) magnetic resonance imaging (MRI) is an important molecularimaging technique at the protein level in tissue. Neurodegenerative diseases have a highlikelihood of causing abnormal protein accu...Amide proton transfer (APT) magnetic resonance imaging (MRI) is an important molecularimaging technique at the protein level in tissue. Neurodegenerative diseases have a highlikelihood of causing abnormal protein accumulation in the brain, which can be detectedby APT MRI. This article briefly introduces the principles and image processing technologyof APT MRI, and reviews the current state of research on Alzheimer's disease and Parkinson's disease using this technique. Early applications of this approach in these twoneurodegenerative diseases are encouraging, which also suggests continued technicaldevelopment and larger clinical trials to gauge the value of this technique.展开更多
Transition metal-nitrogen-carbon(M-N-C)as a promising substitute for the conventional noble metalbased catalyst still suffers from low activity and durability for oxygen reduction reaction(ORR)in proton exchange membr...Transition metal-nitrogen-carbon(M-N-C)as a promising substitute for the conventional noble metalbased catalyst still suffers from low activity and durability for oxygen reduction reaction(ORR)in proton exchange membrane fuel cells(PEMFCs).To tackle the issue,herein,a new type of sulfur-doped ironnitrogen-hard carbon(S-Fe-N-HC)nanosheets with high activity and durability in acid media were developed by using a newly synthesized precursor of amide-based polymer with Fe ions based on copolymerizing two monomers of 2,5-thiophene dicarboxylic acid(TDA)as S source and 1,8-diaminonaphthalene(DAN)as N source via an amination reaction.The as-synthesized S-Fe-N-HC features highly dispersed atomic Fe Nxmoieties embedded into rich thiophene-S doped hard carbon nanosheets filled with highly twisted graphite-like microcrystals,which is distinguished from the majority of M-N-C with soft or graphitic carbon structures.These unique characteristics endow S-Fe-N-HC with high ORR activity and outstanding durability in 0.5 M H_(2)SO_(4).Its initial half-wave potential is 0.80 V and the corresponding loss is only 21 m V after 30,000 cycles.Meanwhile,its practical PEMFC performance is a maximum power output of 628.0 mW cm^(-2)and a slight power density loss is 83.0 m W cm^(-2)after 200-cycle practical operation.Additionally,theoretical calculation shows that the activity of Fe Nxmoieties on ORR can be further enhanced by sulfur doping at meta-site near FeN_(4)C.These results evidently demonstrate that the dual effect of hard carbon substrate and S doping derived from the precursor platform of amid-polymers can effectively enhance the activity and durability of Fe-N-C catalysts,providing a new guidance for developing advanced M-N-C catalysts for ORR.展开更多
The amide A band of protein is sensitive to the hydrogen bands of amide groups of proteins. However, it is hard to distinguish the amide A band of aqueous protein in situ directly, since it overlaps with O-H stretchin...The amide A band of protein is sensitive to the hydrogen bands of amide groups of proteins. However, it is hard to distinguish the amide A band of aqueous protein in situ directly, since it overlaps with O-H stretching vibration of water. In this work, we presented a new analytical method of Raman ratio spectrum, which can extract the amide A band of proteins in water. To obtain the Raman ratio spectrum, the Raman spectrum of aqueous protein was divided by that of pure water. A mathematical simulation was employed to examine whether Raman ratio spectrum is effective. Two kinds of protein, lysozyme and (^-chymotrypsin were employed. The amide A bands of them in water were extracted from Raman ratio spectra. Additionally, the process of thermal denaturation of lysozyme was detected from Raman ratio spectrum. These results demonstrated the Raman ratio spectra could be employed to study the amide A modes of proteins in water.展开更多
The widespread use of chemical herbicides especially amide herbicides has promoted the innovation of chemical weeding in farmland, but amide herbicides have brought invisible chemical injuries to crops in addition to ...The widespread use of chemical herbicides especially amide herbicides has promoted the innovation of chemical weeding in farmland, but amide herbicides have brought invisible chemical injuries to crops in addition to weeding. Herbi-cidesafeners should be applied at the same time with herbicides to ensure herbi- cides will not injure crops while controlling weeds. The research and application of safeners is of great significance to resolving or alleviating the negative effects of herbicides on crop growth. The overview, mechanism, applied research progress and existing problems of amide herbicides and their safenars are summarized.展开更多
Natural bioactive compounds from plants are of great importance in modern therapeutics,which are used to prepare antibiotics, growth supplements or some other therapeutics. Ltheanine is such a bioactive amide amino ac...Natural bioactive compounds from plants are of great importance in modern therapeutics,which are used to prepare antibiotics, growth supplements or some other therapeutics. Ltheanine is such a bioactive amide amino acid presented in different plants and fungi,especially in tea. Theanine has influential effects on lifestyle associated diseases, such as diabetes, cardiovascular disorders, hypertension, stress relief, tumor suppression,menstruation and liver injury. This amino acid can maintain normal sleep and improve memory function and nullify effect of the neurotoxins. The rate of bioavailability and its medium of ingestion in the body is one of the great concerns for its additional antioxidant properties. Pharmacokinetics of the bioactive compound and its mode of action are described herewith. The biosynthesis and industrial synthesis are also reviewed to promote accelerated production of this bioactive compound in the pharmaceutical industries.展开更多
A new wo-armed?acyclic diamide Ia 2, 6-bis(1-ethanecarbozamido-2-amino)pyridine, and a new series of aromatic aldehyde schiff bases containing pyridine ring and amide bridge, IIa-f, were prepared. The compounds were...A new wo-armed?acyclic diamide Ia 2, 6-bis(1-ethanecarbozamido-2-amino)pyridine, and a new series of aromatic aldehyde schiff bases containing pyridine ring and amide bridge, IIa-f, were prepared. The compounds were characterized by elemental analysis, IR, 1HNMR and MS. The bioactivity half inhibitory concentration C1/2 is given.展开更多
Ursolic acid was modified at C3 and C28 position to obtain fourteen derivatives including twelve novel compounds, and their chemical structures were characterized by IR, ^1H NMR and MS. Cell growth inhibitory effects ...Ursolic acid was modified at C3 and C28 position to obtain fourteen derivatives including twelve novel compounds, and their chemical structures were characterized by IR, ^1H NMR and MS. Cell growth inhibitory effects of the derivatives against Hela cell were evaluated by MTT assay. All these derivatives were found to have stronger cell growth inhibitory than their parent compound, ursolic acid. The derivatives with a substituted acetyl group at C3 hydroxyl group show better activities than those with an unsubstituted hydroxyl group.展开更多
Two novel heterocyclic diamine monomers: 1,2-dihydro-2-(4-aminophenyl)-4-[4-(4-aminophenoxy)phenyl] (2H)phthalazin-1-one and 1,2-dihydro-2-(4-aminophenyl)-4-[4-(4-aminophenoxy)-3,5-dimethylphenyl](2H)phthalazin-1-one ...Two novel heterocyclic diamine monomers: 1,2-dihydro-2-(4-aminophenyl)-4-[4-(4-aminophenoxy)phenyl] (2H)phthalazin-1-one and 1,2-dihydro-2-(4-aminophenyl)-4-[4-(4-aminophenoxy)-3,5-dimethylphenyl](2H)phthalazin-1-one were successfully synthesized from readily available heterocyclic bisphenol-like monomers in two steps in high yield. A series of novel poly(aryl ether amide)s containing the phthalazinone moiety were successfully prepared by the direct polymerization of the novel diamines and aromatic dicarboxylic acids using triphenyl phosphite and pyridine as condensing agents.展开更多
Four new phenolic amides,4-O-methylgrossamide(1),(E)-2-(4,5-dihydroxy-2-{3-[(4-hydrox-yphenethyl)amino]-3-oxopropyl}-phenyl)-3-(4-hydroxy-3-methoxyphenyl)-N-(4-hydroxyphenethyl)acryl-amide(2),(Z)-lyciumamide C(3),(Z)-...Four new phenolic amides,4-O-methylgrossamide(1),(E)-2-(4,5-dihydroxy-2-{3-[(4-hydrox-yphenethyl)amino]-3-oxopropyl}-phenyl)-3-(4-hydroxy-3-methoxyphenyl)-N-(4-hydroxyphenethyl)acryl-amide(2),(Z)-lyciumamide C(3),(Z)-thoreliamide B(4),together with thirteen known phenolic amides were identified from the stem of Lycium barbarum.The structures of the new compounds were determined by spectroscopic methods.All compounds were evaluated for their anti-cancer activities against human glioma stem cell lines.展开更多
基金the National Natural Science Foundation of China(No 20576026)State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology(No 200402)+2 种基金Science & Technology Office of Hebei Province(No 04213036)Foundation of HebeiUniversity of Science and Technology(No XL2006021)Environmental Engineering Key Subject of Hebei Province
文摘Amide ionic liquids (MLs)/L-proline synergistic catalyzed Mannich reactions of isovaleraldehyde, methyl ketones, and aromatic amines were carried out in moderate to high yields ( up to 96% ) and high stereo selectivities ( 〉99% e. e. ). The products were easily isolated by extraction; and the catalyst system was readily recycled at least thrice without significant loss of efficiency. The scope of the substrates was studied and the interpretation of the manifest improvement of the reaction rates and enantio-selectivity of the novel catalyst system was speculated.
文摘A series of novel aromatic poly ( amide imide)s containing phthalazinone moieties were prepared from 2-(4-aminophenyl)-4-[3-methyl-4-(4-aminophenoxy)-2,3-phthalazinone-1], a novel diamine 1 with four diimide-dicarboxylic acids by Yamazaki phosphorylation method with the inherent viscosity of 0.36~0.65 dL/g. These polymers had high glass transition temperatures above 300C and they lost 10% weight between 426~475C in N2. The structure of diamine 1 and the polymers was confirmed by IR, 1H NMR and MS. The obtained polymers were readily soluble in polar solvents such as NMP, m-cresol etc. and easily cast into tough, flexible films. The X-ray indicated that they are all amorphous.
基金This work was supported by the Key Natural Science Foundation of Fujian Province (E0320003).
文摘The direct polymerization of an unsymmetrical kink non-coplanar heterocyclic diamine (1) with various aromatic bis(trimellitimide)s (2a-e) using triphenyl phosphite and pyridine as condensing agents could generate a series of new aromatic poly(amide imide)s (3a-e) containing the kink non-coplanar phthalazinone heterocyclic units in the polymer main chains with inherent viscosities of 0.58-0.66 dL/g. The polymers are readily soluble in a variety of solvents such as N,N- dimethylformamide, N,N-dimethylacetamide, dimethyl sulfoxide, N-methyl-2-pyrrolidinone, pyridine and m-cresol and can be cast to form flexible and tough films. The glass transition temperatures of polymers (Tg) are in the range of 301-327°C, and the temperatures for 5% weight loss in nitrogen are in the range of 498-521 'C.
文摘The synthesis and characterization of a series of novel poly(aryl amide imide)s based on o diphenyltrimellitic anhydride are described.The poly(aryl amide imide)s having inherent viscosities of 0.39-1.43dL/g in N methyl 2 pyrrolidinone at 30℃,were prepared by polymerization with aromatic diamines in N,N-dimethylacetamide and subsequent chemical imidization.All the polymers were amorphous,readily soluble in aprotic polar solvents such as DMAC,NMP,DMF,DMSO,and m cresol,and could be cast to form flexible and tough films.The glass trsanition temperatures were in the range of 284-336℃,and the temperatures for 5% weight loss in nitrogen were above 468℃.
文摘(S)-(+)-2,2-dimethylcyclopropane carbox amide is a key intermediate of Cilastatin, an inhibitor of dehydropeptidase-I. Its corresponding solid-liquid equilibrium data will provide essential support for industrial design and further theoretical studies. The solubilities of (S)-(+)-2,2-dimethylcyclopropane carbox amide in toluene, dichloromethane, trichloromethane, ethyl acetate, ethanol and pure water at different temperature were measured using the synthetic method by a laser monitoring observation technique. The solubility data were correlated with the modified Apelblat equation.The calculated values were good in agreement with the experimental values.
文摘(S)-(+)-2,2-dimethylcyclopropane carbox amide is a key intermediate of Cilastatin, an inhibitor of de- hydropeptidase-I. Its corresponding solid-liquid equilibrium data will provide essential support for industrial design and further theoretical studies. The solubilities of (S)-(+)-2,2-dimethylcyclopropane carbox amide in toluene, di- chloromethane, trichloromethane, ethyl acetate, ethanol and pure water at different temperature were measured us- ing the synthetic method by a laser monitoring observation technique. The solubility data were correlated with the modified Apelblat equation. The calculated values were good in agreement with the experimental values.
文摘An efficient route for the palladium-catalyzed reductive aminocarbonylation of olefins with nitroarenes was developed using carbon monoxide(CO)as both reductant and carbonyl source,which enables facile access to amides with excellent regioselectivity and broad substrate scope.It is found that the counter anions of the Pd catalyst precursors significantly affect the reaction chemoselectivity and amide regioselectivity.Branched amides were mainly obtained with K2PdCl4 as the metal catalyst,and phosphine ligands had no influence on the regioselectivity but affected the catalytic reactivity.However,phosphine ligands had significant effects on aminocarbonylation regioselectivity when Pd(CH3CN)4(OTf)2 was used;monodentate phosphines tended to form branched amides,and bidentate phosphines mainly formed linear amides.Trapping experiments,primary kinetic studies,and control reactions with all possible N-species reduced from nitroarene indicated that the catalytic synthesis of branched and linear amides produced nitrene(further converted to enamide)and aniline,respectively,different from the previous ligand-controlled regioselective synthesis of amides via the aminocarbonylation of olefins with amines.Furthermore,the proposed synthesis route could be applied in the synthesis of gram-scale propanil under mild conditions.
文摘The pursuit of incorporating eco-friendly reinforcing agents in polymer composites has accentuated the exploration of various natural biomass-derived materials.The burgeoning environmental crisis spurred by the discharge of synthetic dyes into wastewater has catalyzed the search for effective and sustainable treatment technologies.Among the various sorbent materials explored,biochar,being renewable,has gained prominence due to its excellent adsorption properties and environmental sustainability.It has also emerged as a focal point for its potential to replace other conventional reinforcing agents,viz.,fumed silica,aluminum oxide,treated clays,etc.This study introduces a novel class of polymer nanocomposites comprising of lignin-based biochar particles and poly(ester amide urethane)matrix via a feasible method.The structural evaluation of these nanocomposites was accomplished using Fourier-transform infrared spectroscopy,X-ray photoelectron spectroscopy,and powder X-ray diffraction.The polymer nanocomposites exhibited superior mechanical properties with an increment in tensile strength factor by 45%in comparison to its pristine matrix,along with an excellent toughness value of 90.22 MJm^(−3)at a low loading amount of only 1 wt%.The composites showed excellent improvement in thermal properties with a sharp rise in the glass transition temperature(Tg)value from−28.15℃to 84℃,while also championing sustainability through inherent biodegradability attributes.Beyond their structural prowess,these polymer nanocomposites demonstrated excellent potential as adsorbents,displaying efficient removal of malachite green and tartrazine dyes from aqueous systems with a removal efficiency of 87.25%and 73.98%,respectively.The kinetics study revealed the pseudo second order model to be the precision tool to assess the dye removal study.Complementing this,the Langmuir adsorption isotherm provided a framework to assess the sorption features of the polymer nanocomposites.Overall,these renewable biochar integrated polymer matrices boast remarkable recovery capabilities up to seven cycles of usage with an excellent dye recovery percentage of 95.21%for the last cycle,thereby defining sustainability as well as economic feasibility.
基金This work is financially supported by the Youth Talent Project of Major Academic and Technical Leaders Training Program of Jiangxi Province(Grant No.20204BCJL23045)the National Natural Science Foundation of China(Grant No.31800493)+1 种基金the Special Research Project on Camphor Tree(KRPCT)of Jiangxi Forestry Department(Grant No.2020CXZX07)the Innovative Leading Talent Short-Term Project in the Natural Science Area of Jiangxi Province(jxsq2018102072).
文摘The preparation of bioactive derivatives from the renewable natural product pinene is a hot research topic in the deep processing and utilization of pinene.In this study,β-pinene was used to develop novel molecules as a promising new precursor of insecticide.A series of amide-containing derivatives ofβ-pinene were synthesized and characterized.The insecticidal activities of these derivatives against Mythimna separate and Semiaphis heraclei were tested.The structure characterization results showed that the characterization data of amide-containing derivatives were in full agreement with their proposed structures.The insecticidal activities evaluation results indicated that amide-containing derivatives exhibited weak insecticidal activity against Mythimna separate,but exhibited moderate to good insecticidal activity against Semiaphis heraclei.After testing for 72 h,the corrected mortality against Semiaphis heraclei of compounds 5c,5e,5f,5 h,5j,and 5 m was 100%at 1000 mg/L.The structure-activity relationship analysis results showed that the introduction of an amide group into the structure of derivatives improved their insecticidal activity against Semiaphis heraclei.Meanwhile,the amide-containing derivatives containing the F and NO_(2) substituted benzene ring might improve their insecticidal activity against Semiaphis heraclei.This study will be helpful for the high value-added utilization of the natural renewable resourceβ-pinene and the development of novel insecticides.
基金the financial support from the National Natural Science Foundation of China(21991104)the Shandong Province Major Science and Technology Innovation Project(2019JZZY020401)。
文摘The methanolysis of amides,which is widely employed in the synthetic organic chemistry,hardly occurs under mild conditions.To safely and controllably intensify the methanolysis reaction with hightemperature and high-pressure environment,a continuous tubular reaction technology is developed,whose space-time yield is over twice of that of the conventional batch reaction.The methanolysis of acetanilide is selected as the representative reaction,and the influences of temperature,pressure,reactant and catalyst concentration,and residence time on the reaction performances are systematically investigated.Taking the advantages of precise temperature and reaction time control by the tubular reactor,the kinetics of acetanilide methanolysis are determined and compared to the kinetics of acetanilide hydrolysis reaction.The tubular reaction method is also employed to test a variety of other amides to show the effects of substituents,steric hindrance,and alkalinity on the reaction rate of methanolysis.
基金the National Program for Support of Top-notch Young Professionals(No.0106514050)the National NSFC(Nos.82273811 and 82104043)+3 种基金the National Key R&D Program of China(No.2021YFA0910500)the National NSF for Distinguished Young Scholars(No.81725021)the Innovative Research Groups of the National NSFC(No.81721005)the Academic Frontier Youth Team of HUST(No.2017QYTD19).
文摘Three new amide derivatives(alteralkaloids A-C,1-3)and three known alkaloids(4-6)were afforded after phytochemical investigation of fungus Alternaria brassicicola.The structures of these compounds were confirmed by NMR spectroscopic and HRESIMS data.Furthermore,the absolute configuration of 1 was determined using the single-crystal X-ray diffraction analysis.Compounds 1-3 belong to a class of amide derivatives that have not been found in nature before,sharing the same characteristic signals of the butyl moiety and amide group.These isolated compounds mentioned above were tested for the cytotoxic activity.
文摘Amide proton transfer (APT) magnetic resonance imaging (MRI) is an important molecularimaging technique at the protein level in tissue. Neurodegenerative diseases have a highlikelihood of causing abnormal protein accumulation in the brain, which can be detectedby APT MRI. This article briefly introduces the principles and image processing technologyof APT MRI, and reviews the current state of research on Alzheimer's disease and Parkinson's disease using this technique. Early applications of this approach in these twoneurodegenerative diseases are encouraging, which also suggests continued technicaldevelopment and larger clinical trials to gauge the value of this technique.
基金finically supported by the National Natural Science Foundation of China(22075055)the Guangxi Science and Technology Project(AB16380030)。
文摘Transition metal-nitrogen-carbon(M-N-C)as a promising substitute for the conventional noble metalbased catalyst still suffers from low activity and durability for oxygen reduction reaction(ORR)in proton exchange membrane fuel cells(PEMFCs).To tackle the issue,herein,a new type of sulfur-doped ironnitrogen-hard carbon(S-Fe-N-HC)nanosheets with high activity and durability in acid media were developed by using a newly synthesized precursor of amide-based polymer with Fe ions based on copolymerizing two monomers of 2,5-thiophene dicarboxylic acid(TDA)as S source and 1,8-diaminonaphthalene(DAN)as N source via an amination reaction.The as-synthesized S-Fe-N-HC features highly dispersed atomic Fe Nxmoieties embedded into rich thiophene-S doped hard carbon nanosheets filled with highly twisted graphite-like microcrystals,which is distinguished from the majority of M-N-C with soft or graphitic carbon structures.These unique characteristics endow S-Fe-N-HC with high ORR activity and outstanding durability in 0.5 M H_(2)SO_(4).Its initial half-wave potential is 0.80 V and the corresponding loss is only 21 m V after 30,000 cycles.Meanwhile,its practical PEMFC performance is a maximum power output of 628.0 mW cm^(-2)and a slight power density loss is 83.0 m W cm^(-2)after 200-cycle practical operation.Additionally,theoretical calculation shows that the activity of Fe Nxmoieties on ORR can be further enhanced by sulfur doping at meta-site near FeN_(4)C.These results evidently demonstrate that the dual effect of hard carbon substrate and S doping derived from the precursor platform of amid-polymers can effectively enhance the activity and durability of Fe-N-C catalysts,providing a new guidance for developing advanced M-N-C catalysts for ORR.
基金This work was supported by the National Natural Science Foundation of China (No.91127042, No.21103158, No.21273211, No.21473171), the National Key Basic Research Special Foundation (No.2013CB834602 and No.2010CB923300), the Fundamental Research Funds for the Central Universities (No.7215623603), and the Hua-shan Mountain Scholar Program. We also thank Doctor Kang-zhen Tian and Professor Shu-ji Ye for the measurement of IR spectra of aqueous lysozyme.
文摘The amide A band of protein is sensitive to the hydrogen bands of amide groups of proteins. However, it is hard to distinguish the amide A band of aqueous protein in situ directly, since it overlaps with O-H stretching vibration of water. In this work, we presented a new analytical method of Raman ratio spectrum, which can extract the amide A band of proteins in water. To obtain the Raman ratio spectrum, the Raman spectrum of aqueous protein was divided by that of pure water. A mathematical simulation was employed to examine whether Raman ratio spectrum is effective. Two kinds of protein, lysozyme and (^-chymotrypsin were employed. The amide A bands of them in water were extracted from Raman ratio spectra. Additionally, the process of thermal denaturation of lysozyme was detected from Raman ratio spectrum. These results demonstrated the Raman ratio spectra could be employed to study the amide A modes of proteins in water.
基金Supported by Special Fund for Agro-scientific Research in the Public Interest(201303031)Strategic Emerging Industries Key Technology and Major Science and Technology Achievement Transformation in Hunan Province(2014GK1040)~~
文摘The widespread use of chemical herbicides especially amide herbicides has promoted the innovation of chemical weeding in farmland, but amide herbicides have brought invisible chemical injuries to crops in addition to weeding. Herbi-cidesafeners should be applied at the same time with herbicides to ensure herbi- cides will not injure crops while controlling weeds. The research and application of safeners is of great significance to resolving or alleviating the negative effects of herbicides on crop growth. The overview, mechanism, applied research progress and existing problems of amide herbicides and their safenars are summarized.
文摘Natural bioactive compounds from plants are of great importance in modern therapeutics,which are used to prepare antibiotics, growth supplements or some other therapeutics. Ltheanine is such a bioactive amide amino acid presented in different plants and fungi,especially in tea. Theanine has influential effects on lifestyle associated diseases, such as diabetes, cardiovascular disorders, hypertension, stress relief, tumor suppression,menstruation and liver injury. This amino acid can maintain normal sleep and improve memory function and nullify effect of the neurotoxins. The rate of bioavailability and its medium of ingestion in the body is one of the great concerns for its additional antioxidant properties. Pharmacokinetics of the bioactive compound and its mode of action are described herewith. The biosynthesis and industrial synthesis are also reviewed to promote accelerated production of this bioactive compound in the pharmaceutical industries.
文摘A new wo-armed?acyclic diamide Ia 2, 6-bis(1-ethanecarbozamido-2-amino)pyridine, and a new series of aromatic aldehyde schiff bases containing pyridine ring and amide bridge, IIa-f, were prepared. The compounds were characterized by elemental analysis, IR, 1HNMR and MS. The bioactivity half inhibitory concentration C1/2 is given.
基金Natural Science Foundation of Liaoning Province of China (No.20042009)Science and Technology Foundation of Shenyang City of China(No.20050785)
文摘Ursolic acid was modified at C3 and C28 position to obtain fourteen derivatives including twelve novel compounds, and their chemical structures were characterized by IR, ^1H NMR and MS. Cell growth inhibitory effects of the derivatives against Hela cell were evaluated by MTT assay. All these derivatives were found to have stronger cell growth inhibitory than their parent compound, ursolic acid. The derivatives with a substituted acetyl group at C3 hydroxyl group show better activities than those with an unsubstituted hydroxyl group.
文摘Two novel heterocyclic diamine monomers: 1,2-dihydro-2-(4-aminophenyl)-4-[4-(4-aminophenoxy)phenyl] (2H)phthalazin-1-one and 1,2-dihydro-2-(4-aminophenyl)-4-[4-(4-aminophenoxy)-3,5-dimethylphenyl](2H)phthalazin-1-one were successfully synthesized from readily available heterocyclic bisphenol-like monomers in two steps in high yield. A series of novel poly(aryl ether amide)s containing the phthalazinone moiety were successfully prepared by the direct polymerization of the novel diamines and aromatic dicarboxylic acids using triphenyl phosphite and pyridine as condensing agents.
基金The authors are grateful to agricultural com-prehensive development project of science and technology in Ningxia province(Research on Chinese wolfberry active substances and health products)STS project of Chinese Academy of Sciences for the financial support.
文摘Four new phenolic amides,4-O-methylgrossamide(1),(E)-2-(4,5-dihydroxy-2-{3-[(4-hydrox-yphenethyl)amino]-3-oxopropyl}-phenyl)-3-(4-hydroxy-3-methoxyphenyl)-N-(4-hydroxyphenethyl)acryl-amide(2),(Z)-lyciumamide C(3),(Z)-thoreliamide B(4),together with thirteen known phenolic amides were identified from the stem of Lycium barbarum.The structures of the new compounds were determined by spectroscopic methods.All compounds were evaluated for their anti-cancer activities against human glioma stem cell lines.