期刊文献+
共找到5,717篇文章
< 1 2 250 >
每页显示 20 50 100
Mixed‑Dimensional Assembly Strategy to Construct Reduced Graphene Oxide/Carbon Foams Heterostructures for Microwave Absorption,Anti‑Corrosion and Thermal Insulation 被引量:2
1
作者 Beibei Zhan Yunpeng Qu +8 位作者 Xiaosi Qi Junfei Ding Jiao‑jing Shao Xiu Gong Jing‑Liang Yang Yanli Chen Qiong Peng Wei Zhong Hualiang Lv 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第11期1-18,共18页
Considering the serious electromagnetic wave(EMW)pollution problems and complex application condition,there is a pressing need to amalgamate multiple functionalities within a single substance.However,the effective int... Considering the serious electromagnetic wave(EMW)pollution problems and complex application condition,there is a pressing need to amalgamate multiple functionalities within a single substance.However,the effective integration of diverse functions into designed EMW absorption materials still faces the huge challenges.Herein,reduced graphene oxide/carbon foams(RGO/CFs)with two-dimensional/three-dimensional(2D/3D)van der Waals(vdWs)heterostructures were meticulously engineered and synthesized utilizing an efficient methodology involving freeze-drying,immersing absorption,secondary freeze-drying,followed by carbonization treatment.Thanks to their excellent linkage effect of amplified dielectric loss and optimized impedance matching,the designed 2D/3D RGO/CFs vdWs heterostructures demonstrated commendable EMW absorption performances,achieving a broad absorption bandwidth of 6.2 GHz and a reflection loss of-50.58 dB with the low matching thicknesses.Furthermore,the obtained 2D/3D RGO/CFs vdWs heterostructures also displayed the significant radar stealth properties,good corrosion resistance performances as well as outstanding thermal insulation capabilities,displaying the great potential in complex and variable environments.Accordingly,this work not only demonstrated a straightforward method for fabricating 2D/3D vdWs heterostructures,but also outlined a powerful mixeddimensional assembly strategy for engineering multifunctional foams for electromagnetic protection,aerospace and other complex conditions. 展开更多
关键词 Multifunctionality Reduced graphene oxide/carbon foams 2D/3D van der Waals heterostructures Electromagnetic wave absorption Thermal insulation
下载PDF
Aggregation-regulated bioreduction process of graphene oxide by Shewanella bacteria
2
作者 Kaixin Han Yibo Zeng +2 位作者 Yinghua Lu Ping Zeng Liang Shen 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第5期56-62,共7页
The bioreduction of graphene oxide(GO)using environmentally functional bacteria such as Shewanella represents a green approach to produce reduced graphene oxide(rGO).This process differs from the chemical reduction th... The bioreduction of graphene oxide(GO)using environmentally functional bacteria such as Shewanella represents a green approach to produce reduced graphene oxide(rGO).This process differs from the chemical reduction that involves instantaneous molecular reactions.In bioreduction,the contact of bacterial cells and GO is considered the rate-limiting step.To reveal how the bacteria-GO integration regulates rGO production,the comparative experiments of GO and three Shewanella strains were carried out.Fourier-transform infrared spectroscopy,X-ray photoelectron spectroscopy,Raman spectroscopy,and atomic force microscopy were used to characterize the reduction degree and the aggregation degree.The results showed that a spontaneous aggregation of GO and Shewanella into the condensed entity occurred within 36 h.A positive linear correlation was established,linking three indexes of the aggregation potential,the bacterial reduction ability,and the reduction degree(ID/IG)comprehensively. 展开更多
关键词 graphene oxide Reduced graphene oxide BIOREDUCTION AGGREGATION SHEWANELLA
下载PDF
Amino-Functionalized Reduced Graphene-Oxide-Copper (I) Oxide Composite: A Prospective Catalyst for Photo-Reduction of CO2
3
作者 Srijita Basumallick 《Graphene》 2016年第2期90-95,共6页
In the present article, an easy synthetic strategy of a novel composite photo-catalyst comprising of amino-functionalized reduced graphene oxide and Cu2O has been proposed. Role of this composite catalyst in photo red... In the present article, an easy synthetic strategy of a novel composite photo-catalyst comprising of amino-functionalized reduced graphene oxide and Cu2O has been proposed. Role of this composite catalyst in photo reduction of CO2 has been analyzed and it is shown that both amino groups and reduced grapheme oxide, participate in enhancing quantum yield of the photo reduction process. 展开更多
关键词 Reduced graphene oxide Photo-Catalyst Cuprous oxide
下载PDF
In vitro investigations on the effects of graphene and graphene oxide on polycaprolactone bone tissue engineering scaffolds
4
作者 Yanhao Hou Weiguang Wang Paulo Bartolo 《Bio-Design and Manufacturing》 SCIE EI CAS CSCD 2024年第5期651-669,共19页
Polycaprolactone(PCL)scaffolds that are produced through additive manufacturing are one of the most researched bone tissue engineering structures in the field.Due to the intrinsic limitations of PCL,carbon nanomateria... Polycaprolactone(PCL)scaffolds that are produced through additive manufacturing are one of the most researched bone tissue engineering structures in the field.Due to the intrinsic limitations of PCL,carbon nanomaterials are often investigated to reinforce the PCL scaffolds.Despite several studies that have been conducted on carbon nanomaterials,such as graphene(G)and graphene oxide(GO),certain challenges remain in terms of the precise design of the biological and nonbiological properties of the scaffolds.This paper addresses this limitation by investigating both the nonbiological(element composition,surface,degradation,and thermal and mechanical properties)and biological characteristics of carbon nanomaterial-reinforced PCL scaffolds for bone tissue engineering applications.Results showed that the incorporation of G and GO increased surface properties(reduced modulus and wettability),material crystallinity,crystallization temperature,and degradation rate.However,the variations in compressive modulus,strength,surface hardness,and cell metabolic activity strongly depended on the type of reinforcement.Finally,a series of phenomenological models were developed based on experimental results to describe the variations of scaffold’s weight,fiber diameter,porosity,and mechanical properties as functions of degradation time and carbon nanomaterial concentrations.The results presented in this paper enable the design of three-dimensional(3D)bone scaffolds with tuned properties by adjusting the type and concentration of different functional fillers. 展开更多
关键词 Additive manufacturing Bone tissue engineering Carbon nanomaterial graphene graphene oxide SCAFFOLD
下载PDF
Fabrication of graphene oxide decorated with poly(dimethyl amino ethyl methacrylate) brush for efficient Cr(Ⅵ) adsorption from aqueous solution
5
作者 Alireza Nouri Siew Fen Chua +2 位作者 Ebrahim Mahmoudi Abdul Wahab Mohammad Wei Lun Ang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第9期51-61,共11页
Confronting the severe health threats and environmental impacts of Cr(Ⅵ) in aquatic environments demands innovative and effective remediation approaches. In this study, Graphene oxide(GO)-decorated poly(dimethyl amin... Confronting the severe health threats and environmental impacts of Cr(Ⅵ) in aquatic environments demands innovative and effective remediation approaches. In this study, Graphene oxide(GO)-decorated poly(dimethyl amino ethyl methacrylate)(PDMAEMA) brush nanocomposites(GOP1, GOP2, GOP3, and GOP4) were fabricated using atom transfer radical polymerization(ATRP) by the “graft from” method.The resulting nanocomposites were utilized for removing Cr(Ⅵ) with good adsorption performance due to the electrostatic interaction of protonated nitrogen groups in the brush chains with negatively charged particles in the solution. The kinetic model of pseudo-second-order best represented the contaminants' adsorption characteristics. The Weber-Morris model further indicated that surface adsorption and intraparticle diffusion mechanisms primarily controlled the adsorption procedure. Additionally, the Langmuir and Temkin isotherm models were found to most accurately represent the adsorption characteristics of the pollutants on the nanocomposites, and GOP4 can achieve the maximum adsorption capacity of 164.4 mg·g^(-1). The adsorbents' capacity maintains above 85% after five cycles of adsorption-desorption. The nanocomposites in this study demonstrate promising potential for eliminating Cr(Ⅵ) from aqueous solutions. 展开更多
关键词 graphene oxide PDMAEMA brush Polymerization Nanoparticles ADSORPTION Chromium
下载PDF
Improving the operational stability of perovskite solar cells with cesium-doped graphene oxide interlayer
6
作者 Masaud Almalki Katerina Anagnostou +15 位作者 Konstantinos Rogdakis Felix T.Eickemeyer Mostafa Othman Minas M.Stylianakis Dimitris Tsikritzis Anwar Q.Alanazi Nikolaos Tzoganakis Lukas Pfeifer Rita Therisod Xiaoliang Mo Christian M.Wolff Aïcha Hessler-Wyser Shaik M.Zakeeruddin Hong Zhang Emmanuel Kymakis Michael Grätzel 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第9期483-490,共8页
Perovskite solar cells(PSCs)have made great advances in terms of power conversion efficiency(PCE),yet their subpar stability continues to hinder their commercialization.The interface between the perovskite layer and t... Perovskite solar cells(PSCs)have made great advances in terms of power conversion efficiency(PCE),yet their subpar stability continues to hinder their commercialization.The interface between the perovskite layer and the charge-carrier transporting layers plays a crucial role in undermining the stability of PSCs.In this work,we propose a strategy to stabilize high-performance PSCs with PCE over 23%by introducing a cesium-doped graphene oxide(GO-Cs)as an interlayer between the perovskite and hole-transporting material.The GO-Cs treated PSCs exhibit excellent operational stability with a projected T80(the time where the device PCE reduces to 80%of its initial value)of 2143 h of operation at the maximum powering point under one sun illumination. 展开更多
关键词 Perovskite solar cells Doped graphene oxide graphene related material Long-term operational stability
下载PDF
Mussel-inspired Methacrylic Gelatin-dopamine/Ag Nanoparticles/Graphene Oxide Hydrogels with Improved Adhesive and Antibacterial Properties for Applications as Wound Dressings
7
作者 宿正楠 HU Yanru +5 位作者 MENG Lihui OUYANG Zhiyuan LI Wenchao ZHU Fang XIE Bin 吴庆知 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第2期512-521,共10页
A novel strategy was developed to prepare the methacrylic gelatin-dopamine(GelMA-DA)/Ag nanoparticles(NPs)/graphene oxide(GO) composite hydrogels with good biocompatibility,mechanical properties,and antibacterial acti... A novel strategy was developed to prepare the methacrylic gelatin-dopamine(GelMA-DA)/Ag nanoparticles(NPs)/graphene oxide(GO) composite hydrogels with good biocompatibility,mechanical properties,and antibacterial activity.Mussel-inspired DA was utilized to modify the GelMA molecules,which imparts good adhesive performance to the hydrogels.GO,interfacial enhancer,not only improves mechanical properties of the hydrogels,but also provides anchor sites for loading Ag NPs through numerous oxygencontaining functional groups on the surface.The experimental results show that the GelMA/Ag NPs/GO hydrogels have good biocompatibility,and exhibit a swelling rate of 202±16%,the lap shear strength of 147±17 kPa,and compressive modulus of 136±53 kPa,in the case of the Ag NPs/GO content of 2 mg/mL.Antibacterial activity of the hydrogels against both gram-negative and gram-positive bacteria is dependent on the Ag NPs/GO content derived from the release of Ag^(+).Furthermore,the GelMA/Ag NPs/GO hydrogels possess good adhesive ability,which is resistant to highly twisted state when stuck on the surface of pigskin.These results demonstrate promising potential of the GelMA-DA/Ag NPs/GO hydrogels as wound dressings for biomedical applications in clinical and emergent treatment. 展开更多
关键词 GelMA dopamine graphene oxide adhesion antibacterial ability
下载PDF
Graphene effectively activating "dead" water molecules between manganese dioxide layers in potassium-ion battery
8
作者 Xinhai Wang Wensheng Yang +5 位作者 Shengshang Lu Shangshu Peng Tong Guo Quan Xie Qingquan Xiao Yunjun Ruan 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期306-315,I0008,共11页
Aqueous potassium-ion batteries(APIBs),recognized as safe and reliable new energy devices,are considered as one of the alternatives to traditional batteries.Layered MnO_(2),serving as the main cathode,exhibits a lower... Aqueous potassium-ion batteries(APIBs),recognized as safe and reliable new energy devices,are considered as one of the alternatives to traditional batteries.Layered MnO_(2),serving as the main cathode,exhibits a lower specific capacity in aqueous electrolytes compared to organic systems and operates through a different reaction mechanism.The application of highly conductive graphene may effectively enhance the capacity of APIBs but could complicate the potassium storage environment.In this study,a MnO_(2) cathode pre-intercalated with K~+ions and grown on graphene(KMO@rGO) was developed using the microwave hydrothermal method for APIBs.KMO@rGO achieved a specific capacity of 90 mA h g^(-1) at a current density of 0.1 A g^(-1),maintaining a capacity retention rate of>90% after 5000 cycles at 5 A g^(-1).In-situ and exsitu characterization techniques revealed the energy-storage mechanism of KMO@rGO:layered MnO_(2)traps a large amount of "dead" water molecules during K~+ions removal.However,the introduction of graphene enables these water molecules to escape during K~+ ions insertion at the cathode.The galvanostatic intermittent titration technique and density functional theory confirmed that KMO@rGO has a higher K~+ions migration rate than MnO_(2).Therefore,the capacity of this cathode depends on the interaction between dead water and K~+ions during the energy-storage reaction.The optimal structural alignment between layered MnO_(2) and graphene allows electrons to easily flow into the external circuit.Rapid charge compensation forces numerous low-solvent K~+ions to displace interlayer dead water,enhancing the capacity.This unique reaction mechanism is unprecedented in other aqueous battery studies. 展开更多
关键词 graphene K-ion batteries Mn-based layered oxide Water molecules Density functional theory
下载PDF
Synthesis of reduced graphene oxide nanosheets from sugarcane dry leaves by two-stage pyrolysis for antibacterial activity
9
作者 Baskar Thangaraj Pravin Raj Solomon +4 位作者 Nutthapon Wongyao Mohamed I.Helal Ali Abdullah Sufian Abedrabbo Jamal Hassan 《Nano Materials Science》 EI CAS CSCD 2024年第5期625-634,共10页
Oxidative-exfoliation methods were in vogue in the production of rGO from graphite.Processing of such synthetic graphite needs high temperatures(2500℃).Thus,such process is not cost-effective.The present study is mad... Oxidative-exfoliation methods were in vogue in the production of rGO from graphite.Processing of such synthetic graphite needs high temperatures(2500℃).Thus,such process is not cost-effective.The present study is made on the dry leaves of sugarcane(Saccharum officinarum)as an alternative raw material so as to be economical and environmentally benign.The dry leaves are subjected to two-step pyrolysis without any catalyst or reducing agent in far divergent temperatures to produce as prepared and acid treated rGOs.They were evaluated by UV–Vis.,FTIR,XRD,Raman spectroscopy,TGA/DTG,BET,FESEM-EDS and TEM.The as prepared rGO has few layers with irregular and folded architecture whereas acid-treated rGO has thinly stacked crumpled sheets with many wrinkles on its surface.The prepared rGOs have multilayered graphitic structure due to the unique ratio between G and D bands.Acid treated rGO has poor thermal stability as compared to that of as-prepared rGO at high temperatures due to the variation in the oxygen-containing functional groups.Acid treated rGO has low antibacterial activity as compared to that of the as-prepared rGO due to the paucity of the functional groups. 展开更多
关键词 Biomass wastes Sugarcane dry leaves PYROLYSIS Reduced graphene oxide Antibacterial activity
下载PDF
Regulation of interlayer channels of graphene oxide nanosheets in ultra-thin Pebax mixed-matrix membranes for CO_(2) capture
10
作者 Feifan Yang Yuanhang Jin +5 位作者 Jiangying Liu Haipeng Zhu Rong Xu Fenjuan Xiangli Gongping Liu Wanqin Jin 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第3期257-267,共11页
For the application of carbon capture by membrane process,it is crucial to develop a highly permeable CO_(2)-selective membrane.In this work,we reported an ultra-thin polyether-block-amide(Pebax)mixedmatrix membranes(... For the application of carbon capture by membrane process,it is crucial to develop a highly permeable CO_(2)-selective membrane.In this work,we reported an ultra-thin polyether-block-amide(Pebax)mixedmatrix membranes(MMMs)incorporated by graphene oxide(GO),in which the interlayer channels were regulated to optimize the CO_(2)/N_(2) separation performance.Various membrane preparation conditions were systematically investigated on the influence of the membrane structure and separation performance,including the lateral size of GO nanosheets,GO loading,thermal reduction temperature,and time.The results demonstrated that the precisely regulated interlayer channel of GO nanosheets can rapidly provide CO_(2)-selective transport channels due to the synergetic effects of size sieving and preferential adsorption.The GO/Pebax ultra-thin MMMs exhibited CO_(2)/N_(2) selectivity of 72 and CO_(2) permeance of 400 GPU(1 GPU=106 cm^(3)(STP)·cm^(2)·s^(-1)·cmHg^(-1)),providing a promising candidate for CO_(2) capture. 展开更多
关键词 Mixed-matrix membrane Ultra-thin membrane Pebax graphene oxide CO_(2) capture
下载PDF
Ultrahydrophobic melamine sponge via interfacial modification with reduced graphene oxide/titanium dioxide nanocomposite and polydimethylsiloxane for oily wastewater treatment
11
作者 Hamidatu Alhassan Ying Woan Soon +1 位作者 Anwar Usman Voo Nyuk Yoong 《Water Science and Engineering》 EI CAS CSCD 2024年第2期139-149,共11页
Three-dimensional(3D)porous absorbents have attracted significant attention in the oily wastewater treatment technology due to their high porosity and elasticity.Given their amphiphilic surface,they have a propensity ... Three-dimensional(3D)porous absorbents have attracted significant attention in the oily wastewater treatment technology due to their high porosity and elasticity.Given their amphiphilic surface,they have a propensity to simultaneously absorb water and oil,which restricts their range of applications.In this study,a reduced graphene oxide and titanium dioxide nanocomposite(rGO/TiO_(2))was used to fabricate an ultra-hydrophobic melamine sponge(MS)through interfacial modification using a solution immersion technique.To further modify it,poly-dimethylsiloxane(PDMS)was grafted onto its surface to establish stronger covalent bonds with the composite.The water contact angle of the sponge(rGO/TiO_(2)/PDMS/MS)was 164.2°,which satisfies the condition for ultrahydrophobicity.The evidence of its water repellency was demonstrated by the Cassie-Baxter theory and the lotus leaf effect.As a result of the increased density of rGO/TiO_(2)/PDMS/MS,it recorded an initial capacity that was 2 g/g lower than the raw MS for crude oil absorption.The raw MS retained 53% of its initial absorption capacity after 20 cycles of absorption,while rGO/TiO_(2)/PDMS/MS retained 97%,suggesting good recyclability.Excellent oil and organic solvent recovery(90%-96%)was demonstrated by rGO/TiO_(2)/PDMS/MS in oil-water combinations.In a continuous separation system,it achieved a remarkable separation efficiency of 2.4×10^(6)L/(m^(3)·h),and in turbulent emulsion separation,it achieved a demulsification efficiency of 90%-91%.This study provides a practical substitute for massive oil spill cleaning. 展开更多
关键词 Oily wastewater Reduced graphene oxide Polydimethylsiloxane(PDMS) Emulsion separation Melamine sponge
下载PDF
Nanocomposite superstructure of zinc oxide mesocrystal/reduced graphene oxide with effective photoconductivity
12
作者 Ahmad A.Ahmad Qais M.Al-Bataineh Ahmad B.Migdadi 《Journal of Semiconductors》 EI CAS CSCD 2024年第11期81-88,共8页
Metal oxide mesocrystals are the alignment of metal oxide nanoparticles building blocks into the ordered superstructure,which have potentially tunable optical,electronic,and electrical properties suitable for practica... Metal oxide mesocrystals are the alignment of metal oxide nanoparticles building blocks into the ordered superstructure,which have potentially tunable optical,electronic,and electrical properties suitable for practical applications.Herein,we report an effective method for synthesizing mesocrystal zinc oxide nanorods(ZnONRs).The crystal,surface,and internal structures of the zinc oxide mesocrystals were fully characterized.Mesocrystal zinc oxide nanorods/reduced graphene oxide(ZnONRs/rGO)nanocomposite superstructure were synthesized also using the hydrothermal method.The crystal,surface,chemical,and internal structures of the ZnONRs/rGO nanocomposite superstructure were also fully characterized.The optical absorption coefficient,bandgap energy,band structure,and electrical conductivity of the ZnONRs/rGO nanocomposite superstructure were investigated to understand its optoelectronic and electrical properties.Finally,the photoconductivity of the ZnONRs/rGO nanocomposite superstructure was explored to find the possibilities of using this nanocomposite superstructure for ultraviolet(UV)photodetection applications.Finally,we concluded that the ZnONRs/rGO nanocomposite superstructure has high UV sensitivity and is suitable for UV detector applications. 展开更多
关键词 MESOCRYSTALS SUPERSTRUCTURE mesocrystal zinc oxide nanorods(ZnONRs) meduced graphene oxide(rGO) ZnONRs/rGO nanocomposite superstructure UV photodetection
下载PDF
The Effect of Graphene Oxide on Mechanical Properties of Cement Mortar
13
作者 Lei FAN Jinhao ZHENG 《Research and Application of Materials Science》 2024年第1期1-4,共4页
Cement is widely used in engineering applications,but it has both the characteristics of high brittleness and poor bending resistance.In this paper,the effects of different amounts ofgraphene oxide on the flexural str... Cement is widely used in engineering applications,but it has both the characteristics of high brittleness and poor bending resistance.In this paper,the effects of different amounts ofgraphene oxide on the flexural strength and compressive strength of cement mortar were studied by doping a certain amount of graphene oxide with cement mortar,and the strengthening mechanism of graphene oxide on cement mortar was obtained through microstructure detection.It is found that graphene oxide has a significant enhancement effect on the macroscopic mechanical properties of cement mortar,and graphene oxide provides nano-nucleation sites and growth templates for cement mortar,accelerates the hydration process,reduces the voids between hydration products,greatly increases the compactness,and improves the macroscopic properties of cement-based materials. 展开更多
关键词 graphene oxide Cement mortar Mechanical properties Microscopic analysis
下载PDF
Synthesis of Cu_2O/reduced graphene oxide composites as anode materials for lithium ion batteries 被引量:6
14
作者 颜果春 李新海 +3 位作者 王志兴 郭华军 张倩 彭文杰 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第12期3691-3696,共6页
A facile way was used to synthesize Cu2O/reduced graphene oxide (rGO) composites with octahedron-like morphology in aqueous solution without any surfactant. TEM images of the obtained Cu2O/rGOs reveal that the Cu2O ... A facile way was used to synthesize Cu2O/reduced graphene oxide (rGO) composites with octahedron-like morphology in aqueous solution without any surfactant. TEM images of the obtained Cu2O/rGOs reveal that the Cu2O particles and rGO distribute hierarchically and the primary Cu2O particles are encapsulated well in the graphene nanosheets. The electrochemical performance of Cu2O/rGOs is enhanced compared with bare Cu2O when they are employed as anode materials for lithium ion batteries. The Cu2O/rGO composites maintain a reversible capacity of 348.4 mA?h/g after 50 cycles at a current density of 100 mA/g. In addition, the composites retain 305.8 mA?h/g after 60 cycles at various current densities of 50, 100, 200, 400 and 800 mA/g. 展开更多
关键词 cuprous oxide reduced graphene oxide anode material
下载PDF
Tungsten carbide-reduced graphene oxide intercalation compound as co-catalyst for methanol oxidation 被引量:3
15
作者 施梅勤 章文天 +2 位作者 李影影 褚有群 马淳安 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2016年第11期1851-1859,共9页
Highly dispersed tungsten carbide(WC) nanoparticles(NPs) sandwiched between few-layer reduced graphene oxide(RGO) have been successfully synthesized by using thiourea as an anchoring and inducing reagent.The met... Highly dispersed tungsten carbide(WC) nanoparticles(NPs) sandwiched between few-layer reduced graphene oxide(RGO) have been successfully synthesized by using thiourea as an anchoring and inducing reagent.The metatungstate ion,[H2W(12)O(40)]^6-,is assembled on thiourea-modified graphene oxide(GO) by an impregnation method.The WC NPs,with a mean diameter of 1.5 nm,are obtained through a process whereby ammonium metatungstate first turns to WS2,which then forms an intercalation compound with RGO before growing,in situ,to WC NPs.The Pt/WC-RGO electrocatalysts are fabricated by a microwave-assisted method.The intimate contacts between Pt,WC,and RGO are confirmed by X-ray diffraction,scanning electron microscope,transmission electron microscope,and Raman spectroscopy.For methanol oxidation,the Pt/WC-RGO electrocatalyst exhibited an electrochemical surface area value of 246.1 m^2/g Pt and a peak current density of1364.7 mA/mg Pt,which are,respectively,3.66 and 4.77 times greater than those of commercial Pt/C electrocatalyst(67.2 m^2/g Pt,286.0 mA/mg Pt).The excellent CO-poisoning resistance and long-term stability of the electrocatalyst are also evidenced by CO stripping,chronoamperometry,and accelerated durability testing.Because Pt/WC-RGO has higher catalytic activity compared with that of commercial Pt/C,as a result of its intercalated structure and synergistic effect,less Pt will be required for the same performance,which in turn will reduce the cost of the fuel cell.The present method is facile,efficient,and scalable for mass production of the nanomaterials. 展开更多
关键词 Tungsten carbide-reduced graphene oxide Intercalation compound THIOUREA ANCHORING Methanol oxidation
下载PDF
Three-dimensional MoS_2/reduced graphene oxide aerogel as a macroscopic visible-light photocatalyst 被引量:4
16
作者 张瑞阳 万文超 +2 位作者 李大为 董帆 周莹 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2017年第2期313-320,共8页
Photocatalysis is regarded as an ideal technology for solving the urgent environmental and energy issues that we face today.Among the reported photocatalysts,molybdenum disulfide(MoS2) is very promising for applicat... Photocatalysis is regarded as an ideal technology for solving the urgent environmental and energy issues that we face today.Among the reported photocatalysts,molybdenum disulfide(MoS2) is very promising for applications in hydrogen production and pollutant photodegradation.However,its lack of active sites and the difficulty of recovering catalysts in powder form have hindered its wide application.Here,we report the successful preparation of a macroscopic visible-light responsive MoS2/reduced graphene oxide(MoS2/RGO) aerogel.The obtained MoS2/RGO aerogel exhibits enhanced photocatalytic activity towards hydrogen production and photoreduction of Cr(Ⅵ) in comparison with the MoS2 powder.In addition,the low density(56.1 mg/cm^3) of the MoS2/RGO aerogel enables it to be used as an efficient adsorption material for organic pollutants.Our results demonstrate that this very promising multifunctional aerogel has potential applications in environmental remediation and clean energy production. 展开更多
关键词 Molybdenum disulfide/reduced graphene oxide aerogel Composite PHOTOCATALYSIS Visible light Adsorption
下载PDF
Microspheres of graphene oxide coupled to N-doped Bi_2O_2CO_3 for visible light photocatalysis 被引量:1
17
作者 金瑞奔 蒋孝佳 +1 位作者 周仰原 赵建夫 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2016年第5期760-768,共9页
Hierarchical microspheres of a graphene oxide(GO) coupled to N‐doped(BiO)2CO3 composite(N‐BOC‐GO) was synthesized by a simple hydrothermal approach. The N‐BOC‐GO composite gave enhancement in photocatalytic... Hierarchical microspheres of a graphene oxide(GO) coupled to N‐doped(BiO)2CO3 composite(N‐BOC‐GO) was synthesized by a simple hydrothermal approach. The N‐BOC‐GO composite gave enhancement in photocatalytic activity compared to the pure BOC and N‐BOC samples. With 1.0wt% GO, 62% NO removal was obtained with N‐BOC‐GO. The factors enhancing the photocatalytic performance were the high electron‐withdrawing ability and high conductivity of GO and improved visible light‐harvesting ability of N‐BOC‐GO with a 3D hierarchical architecture due to the surface scattering and reflecting(SSR) effect. An effective charge transfer from N‐BOC to GO was demonstrated by the much weakened photoluminescene intensity of the N‐BOC‐GO composite. This work highlights the potential application of GO‐based photocatalysts in air purification. 展开更多
关键词 graphene oxide Nitrogen-doped bismuth subcarbonate Hydrothermal approach Activity enhancement Nitrogen oxide removal
下载PDF
Magnetic and microwave absorbing properties of M-type barium ferrite/graphene oxide composite microwave absorber 被引量:1
18
作者 荆洪阳 唐梦茹 +2 位作者 韩永典 徐连勇 李敏 《Journal of Southeast University(English Edition)》 EI CAS 2015年第4期511-515,共5页
In order to improve the absorbing properties of M- type barium ferrite absorbing materials, M-type barium ferrite/graphene oxide composites with different graphene oxide contents were synthesized by the sol-gel autoco... In order to improve the absorbing properties of M- type barium ferrite absorbing materials, M-type barium ferrite/graphene oxide composites with different graphene oxide contents were synthesized by the sol-gel autocombustion method. X-ray diffraction (XRD), a scanning electronic microscopy ( SEM ), a physical properties measurement system (PPMS-9), and a vector network analyzer were used to analyze their structure, surface morphology, magnetic and absorbing properties, respectively. The results show that the absorbing band of the composite absorbing material is widened and the absorbing strength is increased compared with the pure M-type barium ferrite. The sample with the content of doped graphene oxide of 3% has the minimum reflectivity at 10 to 18 GHz frequencies. Hence, the doped graphene oxide effectively improves the absorbing properties of M-type barium ferrite. 展开更多
关键词 M-type barium ferrite graphene oxide composite microwave absorber magnetic property microwave absorbing property
下载PDF
How Graphene Oxide Quenches Fluorescence of Rhodamine 6G 被引量:1
19
作者 樊凯利 郭镇坤 +4 位作者 耿志刚 葛晶 江申龙 胡嘉华 张群 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2013年第3期252-258,I0003,共8页
We investigate the fluorescence quenching of Rhodamine 6G (R6G), a well known laser dye with a high fluorescence quantum yield, by as-synthesized graphene oxide (GO) in aqueous solution, which is found to be rathe... We investigate the fluorescence quenching of Rhodamine 6G (R6G), a well known laser dye with a high fluorescence quantum yield, by as-synthesized graphene oxide (GO) in aqueous solution, which is found to be rather efficient. By means of steady-state and time-resolved fluorescence spectroscopy combined with detailed analysis about the linear absorption vari- ation for this R6G-GO system, the pertinent quenching mechanism has been elucidated to be a combination of dynamic and static quenching. Possible ground-state complexes be- tween R6G and GO during the static quenching have also been suggested. Furthermore, the direction of photoindueed electron transfer between R6G and GO has been discussed. 展开更多
关键词 graphene oxide Rhodamine 6G Fluorescence quenching INTERACTION Mech-anism
下载PDF
A Green and Mild Approach of Synthesis of Highly-Conductive Graphene Film by Zn Reduction of Exfoliated Graphite Oxide 被引量:1
20
作者 耿志刚 张光辉 +5 位作者 林岳 于欣欣 任文贞 吴昱昆 潘楠 王晓平 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2012年第4期494-500,I0004,共8页
We report a simple and green approach to synthesize reduced graphene oxide (RGO) nanosheets at room temperature based on Zn reduction of exfoliated GO. The evolution of GO to RGO has been characterized by X-ray diff... We report a simple and green approach to synthesize reduced graphene oxide (RGO) nanosheets at room temperature based on Zn reduction of exfoliated GO. The evolution of GO to RGO has been characterized by X-ray diffraction, UV-Vis absorption spectroscopy and Raman spectroscopy. The results of X-ray photoelectron spectroscopy reveal that the atomic ratio of carbon to oxygen in the RGO can be tuned from 1.67 to 13.7 through controlling the reduction time. Moreover, the conductivity of the RGO is measured to be 26.9±2.2 kS/m, much larger than those previously obtained by chemical reduction through other reducing agents. More importantly, the resistance of the RGO film with 20 nm thickhess can be as low as 2 kΩ/square, while a high transparency over 70% within a broad spectral range from 0.45 pm to 1.50 p.m can be retained. The proposed method is low-cost, eco-friendly and highly-eiffcient, the as-prepared thinner RGO films are useful in a variety of potential application fields such as optoelectronics, photovoltaics and electrochemistry by serving as an ultralight, flexible and transparent electrode material. 展开更多
关键词 graphene oxide REDUCTION Zn powder
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部