期刊文献+
共找到5,895篇文章
< 1 2 250 >
每页显示 20 50 100
Environmental concentration of ammonia nitrogen induced marked changes in proteome of clam Ruditapes philippinarum in dose-and time-dependent manner
1
作者 Ming CONG Zhaoshun LI +2 位作者 Wenwen TIAN Yuanmei LI Jiasen LÜ 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2024年第5期1634-1650,共17页
Previous studies have revealed that ammonia nitrogen has several adverse effects on clam Ruditapes philippinarum.However,knowledge is lacking regarding the related proteins involved in the toxicological responses,whic... Previous studies have revealed that ammonia nitrogen has several adverse effects on clam Ruditapes philippinarum.However,knowledge is lacking regarding the related proteins involved in the toxicological responses,which is vital to elucidate the underlying mechanism of ammonia nitrogen.In this study,clams R.philippinarum were exposed to ammonia nitrogen for 21 d at two environmentally relevant concentrations.The tandem mass tags approach(TMT)was applied to assay the differentially expressed proteins(DEPs)in clam gill tissues on the 3 rd and 21 st day.Finally,a total of 7263 proteins were identified.Bioinformatics analyses revealed that clam protein profiles changed in dose-and time dependent manner after ammonia nitrogen exposure.We inferred that the clams may face heavy challenges after ammonia exposure,such as unbalanced gender ratio,lysosomal disease,energy lack,neurological disorders,altered glutamine metabolism,increased lipid synthesis,and impaired immunity.Variation profiles of enzyme activities of glutaminase and glutamine synthase provided direct evidence to verify the related inference from proteome data.Most of the inferred toxic effects merit further study.This study identified important proteins related to ammonia nitrogen toxicity in the clam and indicated the severe stress of marine ammonia pollution on the healthy development of mollusc aquaculture. 展开更多
关键词 ammonia nitrogen Ruditapes philippinarum proteomic analysis TOXICITY
下载PDF
Thermal decomposition of magnesium ammonium phosphate and adsorption properties of its pyrolysis products toward ammonia nitrogen 被引量:13
2
作者 陈益清 唐建军 +2 位作者 李文龙 钟振辉 尹娟 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第2期497-503,共7页
High-purity magnesium ammonium phosphate (MAP) was precipitated by controlling pH value of the reaction system of 9.0-9.5. The thermal decomposition behavior of MAP and the adsorption properties of its pyrolysis pro... High-purity magnesium ammonium phosphate (MAP) was precipitated by controlling pH value of the reaction system of 9.0-9.5. The thermal decomposition behavior of MAP and the adsorption properties of its pyrolysis products toward ammonia-nitrogen were also studied by XRD, SEM, TGA-DTA and FT-IR methods. The results indicated that high-purity MAP was obtained at pH value of 9.0-9.5. Upon heating to 100-120℃ for 120 min, MAP was thermally decomposed, losing water and ammonia concomitantly with a reduction in grain size and crystallinity. The capacity of pyrolysis products for ammonia nitrogen adsorption reached 72.5 mg/g, with a removal rate of up to 95% from an 800 mg/L solution. The characteristic diffraction peaks corresponding to MAP mainly appeared in their XRD patterns after adsorption of ammonia nitrogen. The pyrolysis products of MAP at 100-120 ℃ could be recycling-used as the chemical treatment regents of ammonia nitrogen in the practical application. 展开更多
关键词 magnesium ammonium phosphate magnesium hydrogen phosphate thermal decomposition ammonia nitrogen adsorption properties
下载PDF
Effect Research of Immobilized Algae-bacteria Removal Ammonia Nitrogen of Aquaculture Wastewater and Proposed Model 被引量:14
3
作者 邹万生 张景来 +1 位作者 刘良国 邓武军 《Agricultural Science & Technology》 CAS 2010年第5期117-120,共4页
Applied Immobilized algae bacteria (ABI) to remove ammonia of freshwater aquaculture wastewater. Temperature (T),PH,light intensity (I),dissolved oxygen (DO) and filling rate five factors plays important role in the p... Applied Immobilized algae bacteria (ABI) to remove ammonia of freshwater aquaculture wastewater. Temperature (T),PH,light intensity (I),dissolved oxygen (DO) and filling rate five factors plays important role in the process of ammonia nitrogen removal ,related data between ammonia removal and five factors was received through multi-factor orthogonal test,and established relations model between the five factor and nitrogen removal. The results show that five-factors had significant effect on AR,and the best combinations for removing AR was temperature 30 ℃,pH=7.0,light intensity 6 000 lux,dissolved oxygen 5.0 mg/L and the fill rate 10%. According to the experimental data,equation model was proposed and coefficient of determination R2 =0.864 8,P<0.05. Samples T-test was done between the model predictions and the actual measured values.Test results showed that the significant difference of overall mean value sig. (2-tailed) was 0.978 (P>0.05),it Shows that had no significant difference between model predictions and the actual measured value,and model had a high degree of fitting. 展开更多
关键词 Immobilized Algae-bacteria Aquaculture wastewater ammonia remove rate Proposed model
下载PDF
Change trend analysis of ammonia nitrogen in Nenjiang River main stream under fluctuating precipitation 被引量:1
4
作者 李远 常学礼 +6 位作者 孙朋 吴孟泉 刘紫恩 付益伟 王琼 向明灯 于云江 《环境污染与防治》 CAS CSCD 北大核心 2013年第5期I0002-I0007,12,共6页
将2004-2010年嫩江流域沿途13个气象站的降水量作为径流的主要考察因子,以嫩江最下游的自沙滩水环境监测站获得的氨氮监测数据为流域总体氨氮污染水平表征,分析了降水波动对嫩江流域氨氮污染变化的影响。结果表明,嫩江流域在年度内... 将2004-2010年嫩江流域沿途13个气象站的降水量作为径流的主要考察因子,以嫩江最下游的自沙滩水环境监测站获得的氨氮监测数据为流域总体氨氮污染水平表征,分析了降水波动对嫩江流域氨氮污染变化的影响。结果表明,嫩江流域在年度内的氨氮质量浓度以枯水期最高,平均为(0.99±0.48)mg/L,在丰水期最低,平均为(O.58±0.08)mg/L。从年际总体变化趋势来看,2004-2010年嫩江流域氨氮浓度总体呈增加趋势。降水量的年内分布格局对嫩江流域氨氮浓度的影响在不同时期略有差别。在平水期,降水量变化对氨氮浓度的影响不显著;但在枯水期、丰水期,降水量的波动对氨氮浓度有较显著(Sig.〈O.05)的影响。从年尺度上看,随降水量增加,嫩江流域中氨氮浓度总体呈下降趋势。 展开更多
关键词 《环境污染与防治》 英文摘要 期刊 编辑工作
下载PDF
Removal of Organic Matter and Ammonia Nitrogen in Azodicarbonamide Wastewater by a Combination of Power Ultrasound Radiation and Hydrogen Peroxide 被引量:8
5
作者 李文军 吴笛 +2 位作者 石鑫 文利雄 邵磊 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2012年第4期754-759,共6页
A simple and efficient sonochemical method was developed for the degradation of organic matter and ammonia nitrogen in azodicarbonamide wastewater.The effects of initial pH,ultrasound format and peripheral water level... A simple and efficient sonochemical method was developed for the degradation of organic matter and ammonia nitrogen in azodicarbonamide wastewater.The effects of initial pH,ultrasound format and peripheral water level on the sonolysis of hydrazine,urea,COD and ammonia nitrogen were investigated.It is found that the initial pH has a significant influence on the degradation of hydrazine and ammonia nitrogen,whereas this impact to urea is relatively small.It also shows that a noticeable enhancement of ammonia nitrogen removal could be achieved in a proper intermittent ultrasound operation mode,i.e.,1/1 min on/off mode.The height difference between the periph-eral water level and the inner water level of the flask affects the efficiency of ultrasonic treatment as well. 展开更多
关键词 azodicarbonamide wastewater organic matter ammonia nitrogen ultrasound radiation hydrogen peroxide
下载PDF
Preparation of Clay/Biochar Composite Adsorption Particle and Performance for Ammonia Nitrogen Removal from Aqueous Solution 被引量:8
6
作者 HUANG Xiao BAI Jie +3 位作者 LI Kuiran ZHAO Yangguo TIAN Weijun HU Chunhui 《Journal of Ocean University of China》 SCIE CAS CSCD 2020年第3期729-739,共11页
This study aimed to present a novel clay/biochar composite adsorption particle, which made from abandoned reed straw and clay to remove ammonia nitrogen(NH4^+-N) from micro-contaminated water. The removal performance ... This study aimed to present a novel clay/biochar composite adsorption particle, which made from abandoned reed straw and clay to remove ammonia nitrogen(NH4^+-N) from micro-contaminated water. The removal performance of NH4^+-N by composite adsorption particle was monitored under different raw material proportions and initial NH4^+-N concentration. Besides, adsorption kinetics and adsorption isotherms were investigated to reveal the adsorption mechanisms. The results showed that NH4^+-N was effectively removed under optimal proportion of biochar, foaming agent and crosslinker with 20%, 3%, and 3%, respectively. The optimal contact time was 150 min and the best removal efficiency was 88.6% at initial NH4^+-N concentration of 20 mg L^-1. The adsorption performance was well described by the second order kinetic model and Freundlich model. The novel clay/biochar composite adsorption particle in this study demonstrated a high potential for NH4^+-N removal from surface water. 展开更多
关键词 CLAY BIOCHAR composite adsorption particle ammonia nitrogen removal adsorption mechanism
下载PDF
Inhibitory effect of ammonia nitrogen on specific methanogenic activity of anaerobic granular sludge 被引量:6
7
作者 周洪波 邱冠周 《Journal of Central South University of Technology》 EI 2006年第1期63-67,共5页
A series of batch experiments were conducted in 125 mL serum bottles to assess the toxicity of different concentrations of ammonia nitrogen to the specific methanogenic activity of anaerobic granular sludge from upflo... A series of batch experiments were conducted in 125 mL serum bottles to assess the toxicity of different concentrations of ammonia nitrogen to the specific methanogenic activity of anaerobic granular sludge from upflow anaerobic sludge bed(UASB) and expanded granular sludge bed(EGSB) reactors. The effects of pH value and temperature on toxicity of ammonia nitrogen to anaerobes were investigated. The results show that the specific methanogenic activity of anaerobic granular sludge suffers inhibition from ammonia nitrogen, the concentrations of ammonia nitrogen that produce 50 % inhibition of specific methanogenic activity for sludge from UASB and EGSB reactor are 2.35 and 2.75 g/L, respectively. Hydrogen utilizing methanogens suffers less inhibition from ammonia mtrogen than that of acetate utilizing methanogens. Hydrogen-producing acetogens that utilize propionate and butyrate as substrates suffer serious inhibition from ammonia nitrogen. The toxicity of ammonia nitrogen to anaerobic granular sludge enhances when pH value and temperature increase. Anaerobic granular sludge can bear higher concentrations of ammonia nitrogen after being acclimated by ammonia nitrogen for 7 d. 展开更多
关键词 ammonia nitrogen TOXICITY anaerobic granular sludge specific methanogenic activity
下载PDF
Evaluation of the correlation between ammonia nitrogen and p-toluidine using sequencing batch reactor treating synthetic p-toluidine wastewater 被引量:2
8
作者 ZHANG Bo CHEN Jin-long WANG Fan ZHANG Wei-ming ZHANG Quan-xing 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2006年第2期259-262,共4页
This paper presents lab-scale experiment carried out to evaluate the correlation between ammonia nitrogen (NH3-N) and p-toluidine using sequencing batch reactor treating synthetic p-toluidine wastewater. The profile... This paper presents lab-scale experiment carried out to evaluate the correlation between ammonia nitrogen (NH3-N) and p-toluidine using sequencing batch reactor treating synthetic p-toluidine wastewater. The profiles of NH3-N and p-toluidine were traced under the concentration of sucrose in the influent varied from 0 to 500 mg/L, aerated airflow varied from 0.6 to 1.2 L/min and temperature varied from 10 to 25℃, respectively. The results showed that the concentration of NH3-N turned from increase to decrease when p-toluidine was nearly completely biodegraded, so the profile of NH3-N could clearly indicate the endpoint of p-toluidine biodegradation. And the profile of NH3-N was not influenced by the sucrose in the influent, aerated airflow and temperature. It is showed that using ammonia nitrogen as monitoring and control parameter is feasible and reliable and has promising application in amine wastewater treatment by SBR. 展开更多
关键词 sequencing batch reactor CORRELATION ammonia nitrogen P-TOLUIDINE BIODEGRADATION
下载PDF
Preparation of hollow B–SiO2@TiO2 composites and their photocatalytic performances for degradation of ammonia-nitrogen and green algae in aqueous solution 被引量:4
9
作者 Qin Zhou Hengbo Yin +1 位作者 Aili Wang Yang Si 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2019年第10期2535-2543,共9页
Hollow B–SiO2@TiO2 composites were prepared by the wet chemical deposition method starting from TiCl4 and hollow B–SiO2 microspheres.TiO2 layers composed of anatase TiO2 nanoparticles were coated on the surfaces of ... Hollow B–SiO2@TiO2 composites were prepared by the wet chemical deposition method starting from TiCl4 and hollow B–SiO2 microspheres.TiO2 layers composed of anatase TiO2 nanoparticles were coated on the surfaces of the hollow B–SiO2 microspheres probably through the formation of Ti—O—Si and Ti—O—B bonds.A great number of—OH groups were also present at the TiO2 coating layers.The presence of Ti—O—Si bonds and Ti—O—B bonds resulted in the formation of defects in the TiO2 coating layers,which decreased the band gap of the TiO2 coating layers to ca.3.0 eV and endowed the TiO2 coating layers with visible light absorption performance.The buoyancy hollow B–SiO2@TiO2 composites exhibited high photocatalytic activities for the degradation of ammonia-nitrogen and green algae.The conversion of ammonia-nitrogen reached 65%when the degradation of ammonia-nitrogen(43 mg·L-1 at pH value of 8)was catalyzed by the B–SiO2@TiO2(100:10)composite under the simulated solar light irradiation at 35°C for 660 min.The green algae(5 mg·L-1)were almost completely degraded over the B–SiO@TiO2(100:20)photocatalyst under the visible light irradiation at 35°C for 510 min. 展开更多
关键词 B–SiO2@TiO 2composites PHOTOCATALYSIS ammonia-nitrogen Green ALGAE
下载PDF
Nitrogen mobility,ammonia volatilization,and estimated leaching loss from long-term manure incorporation in red soil 被引量:10
10
作者 HUANG Jing DUAN Ying-hua +6 位作者 XU Ming-gang ZHAI Li-mei ZHANG Xu-bo WANG Bo-ren ZHANG Yang-zhu GAO Su-duan SUN Nan 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2017年第9期2082-2092,共11页
Nitrogen(N) loss from fertilization in agricultural fields has an unavoidable negative impact on the environment and a better understanding of the major pathways can assist in developing the best management practice... Nitrogen(N) loss from fertilization in agricultural fields has an unavoidable negative impact on the environment and a better understanding of the major pathways can assist in developing the best management practices. The aim of this study was to evaluate the fate of N fertilizers applied to acidic red soil(Ferralic Cambisol) after 19 years of mineral(synthetic) and manure fertilizer treatments under a cropping system with wheat-maize rotations. Five field treatments were examined: control(CK), chemical nitrogen and potash fertilizer(NK), chemical nitrogen and phosphorus fertilizer(NP), chemical nitrogen, phosphorus and potash fertilizer(NPK) and the NPK with manure(NPKM, 70% N from manure). Based on the soil total N storage change in 0–100 cm depth, ammonia(NH_3) volatilization, nitrous oxide(N_2O) emission, N plant uptake, and the potential N leaching loss were estimated using a mass balance approach. In contrast to the NPKM, all mineral fertilizer treatments(NK, NP and NPK) showed increased nitrate(NO_3~–) concentration with increasing soil depth, indicating higher leaching potential. However, total NH_3 volatilization loss was much higher in the NPKM(19.7%) than other mineral fertilizer treatments(≤4.2%). The N_2O emissions were generally low(0.2–0.9%, the highest from the NPKM). Total gaseous loss accounted for 1.7, 3.3, 5.1, and 21.9% for NK, NP, NPK, and NPKM treatments, respectively. Estimated N leaching loss from the NPKM was only about 5% of the losses from mineral fertilizer treatments. All data demonstrated that manure incorporation improved soil productivity, increased yield, and reduced potential leaching, but with significantly higher NH_3 volatilization, which could be reduced by improving the application method. This study confirms that manure incorporationis an essential strategy in N fertilization management in upland red soil cropping system. 展开更多
关键词 soil NO_3~–-N ammonia volatilization nitrogen leaching long-term field experiment mass balance nitrous oxide emission
下载PDF
Effects of Nitrogen Application Levels on Ammonia Volatilization and Nitrogen Utilization during Rice Growing Season 被引量:9
11
作者 LIN Zhong-cheng DAI Qi-gen +8 位作者 YE Shi-chao WU Fu-guan JIA Yu-shu CHEN Jing-dou XU Lu-sheng ZHANG Hong-cheng Huo Zhong-yang Xu Ke WEt Hai-yan 《Rice science》 SCIE 2012年第2期125-134,共10页
We conducted field trials of rice grown in sandy soil and clay soil to determine the effects of nitrogen application levels on the concentration of NH4+-N in surface water, loss of ammonia through volatilization from... We conducted field trials of rice grown in sandy soil and clay soil to determine the effects of nitrogen application levels on the concentration of NH4+-N in surface water, loss of ammonia through volatilization from paddy fields, rice production, nitrogen-use efficiency, and nitrogen content in the soil profile. The concentration of NH4+-N in surface water and the amount of ammonia lost through volatilization increased with increasing nitrogen application level, and peaked at 1-3 d after nitrogen application. Less ammonia was lost via volatilization from clay soil than from sandy soil. The amounts of ammonia lost via volatilization after nitrogen application differed depending on the stage when it was applied, from the highest loss to the lowest: N application to promote tillering 〉 the first N topdressing to promote panicle initiation (applied at the last 4-leaf stage) 〉 basal fertilizer 〉 the second N topdressing to promote panicle initiation (applied at the last 2-leaf stage). The total loss of ammonia via volatilization from clay soil was 10.49-87.06 kg/hm2, equivalent to 10.92%-21.76% of the nitrogen applied. The total loss of ammonia via volatilization from sandy soil was 11.32-102.43 kg/hm2, equivalent to 11.32%-25.61 % of the nitrogen applied. The amount of ammonia lost via volatilization and the concentration of NH4+-N in surface water peaked simultaneously after nitrogen application; both showed maxima at the tillering stage with the ratio between them ranging from 23.76% to 33.65%. With the increase in nitrogen application level, rice production and nitrogen accumulation in plants increased, but nitrogen-use efficiency decreased. Rice production and nitrogen accumulation in plants were slightly higher in clay soil than in sandy soil. In the soil, the nitrogen content was the lowest at a depth of 40-50 cm. In any specific soil layer, the soil nitrogen content increased with increasing nitrogen application level, and the soil nitrogen content was higher in clay soil than in sandy soil. In terms of ammonia volatilization, the amount of ammonia lost via volatilization increased markedly when the nitrogen application level exceeded 250 kg/hm2 in the rice growing season. However, for rice production, a suitable nitrogen application level is approximately 300 kg/hm2. Therefore, taking the needs for high crop yields and environmental protection into account, the appropriate nitrogen application level was 250-300 kg/hm2 in these conditions. 展开更多
关键词 ammonia volatilization nitrogen application level soil type nitrogen-use efficiency RICE
下载PDF
Study on the Removal of Ammonia Nitrogen from Wastewater Using Microwave Coupled with Active Carbon 被引量:4
12
作者 Zl Pei-jian CHEN Can +2 位作者 DAI You-zhi CHENG Ying-xiang XIANG Ren-jun 《Meteorological and Environmental Research》 2012年第7期51-54,共4页
[ Objective] The study aimed to discuss the feasibility and optimal conditions of removing ammonia nitrogen by using microwave coupled with active carbon. [ Method ] In the study, a novel process, microwave radiation ... [ Objective] The study aimed to discuss the feasibility and optimal conditions of removing ammonia nitrogen by using microwave coupled with active carbon. [ Method ] In the study, a novel process, microwave radiation coupled with active carbon, was applied to remove ammonia nitro- gen from wastewater, and the influences of solution pH, air conditions, active carbon usage, microwave power and time on the removal effect of ammonia nitrogen were studied. [ Result] Microwave coupled with active carbon can remove ammonia nitrogen efficiently, and pumping air into the wastewater can also increase the removal rate of ammonia nitrogen to a certain extent. Higher pH, intensive microwave power and longer treating time could also increase the removal rate of ammonia nitrogen using microwave radiation coupled with active carbon, whereas the usage of active carbon contributed a small impact. It was proved that microwave coupled with active carbon was an effective method for the removal of ammonia ni- trogen from wastewater. Meanwhile, the orthogonal experiment results showed that the removal rate of ammonia nitrogen reached 92.5% under the optimal conditions, that is, the usage of active carbon was 0.5 g, pH = 11, microwave radiation power was 850 W, and microwave action time was 4 minutes. [ Conclusion] The research provided a new method to remove ammonia nitrogen from wastewater, namely microwave coupled with ac- tive carbon. 展开更多
关键词 MICROWAVE Active carbon ammonia nitrogen Removal rate Orthogonal experiment China
下载PDF
Study on Influencing Factors and Kinetics of Removal of Ammonia Nitrogen from High Salinity Wastewater by Sodium Hypochlorite Oxidation 被引量:2
13
作者 Fang Xiaoqin Hu Junjie Xia Junfang 《Meteorological and Environmental Research》 CAS 2017年第6期72-77,共6页
The influencing factors and kinetics of oxidative degradation of ammonia nitrogen in high salinity wastewater by sodium hypochlorite oxidation( Na Cl O) were studied. The results showed that the degradation process of... The influencing factors and kinetics of oxidative degradation of ammonia nitrogen in high salinity wastewater by sodium hypochlorite oxidation( Na Cl O) were studied. The results showed that the degradation process of ammonia nitrogen by sodium hypochlorite accorded with a pseudo first-order kinetics model,and the influencing factors included Na Cl O dosage,initial concentration of ammonia nitrogen,salinity,temperature,and so on. When Na Cl O dosage was 0. 6%( MCl∶ MN= 13. 76),the reaction rate constant was up to 0. 015 75 min^(-1). The higher the initial concentration of ammonia nitrogen was,the worse the effect of oxidation reaction was. When the initial concentration did not exceed 45 mg/L,the effect on oxidation reaction rate constant increased with the increase of the initial concentration. Low salinity had no effect on ammonia nitrogen oxidation.When salinity was higher than 2. 0%,the inhibition effect on ammonia nitrogen oxidation would increase,and the reaction rate constant decreased obviously with the increase of salinity. The improvement of reaction temperature was beneficial to ammonia oxidation degradation. As temperature increased from 10 to 35 ℃,the reaction rate constant rose from 0. 00188 to 0. 01043 min^(-1). 展开更多
关键词 Sodium HYPOCHLORITE OXIDATION High SALINITY WASTEWATER KINETICS ammonia nitrogen
下载PDF
Isolation and Identification of Ammonia Nitrogen Degradation Strains from Industrial Wastewater 被引量:6
14
作者 Cai-Hong Yu Ya Wang +2 位作者 Tao Guo Wan-Xin Shen Ming-Xin Gu 《Engineering(科研)》 2012年第11期790-793,共4页
Nine strains of ammonia nitrogen degradation strains from C1 to C9 were isolated from industrial wastewater to study their degradation and conversion of ammonia nitrogen. The results showed that C2 strain with a high ... Nine strains of ammonia nitrogen degradation strains from C1 to C9 were isolated from industrial wastewater to study their degradation and conversion of ammonia nitrogen. The results showed that C2 strain with a high degradation activiity of ammonia nitrogen, and the ammonia nitrogen degradation rate of the activated C2 strain was 93% within 24 h when the initial concentration of ammonia nitrogen was 200 mg/L under the conditions of inoculation 10%, temperature 35?C, pH 7.0, rotation 200 r/min. And C2 was identified as Bacillus amyloliquefaciens. 展开更多
关键词 Industrial WASTEWATER ammonia nitrogen DEGRADATION Strain DEGRADATION Characteristics
下载PDF
Effects of Nitrogen Application Level on Rice Nutrient Uptake and Ammonia Volatilization 被引量:16
15
作者 YU Qiao-gang YE Jing +6 位作者 YANG Shao-na FU Jian-rong MA Jun-wei SUN Wan-chun JIANG Li-na WANG Qiang WANG Jian-mei 《Rice science》 SCIE 2013年第2期139-147,共9页
The effects of different nitrogen application levels on nutrient uptake and ammonia volatilization were studied with the rice cultivar Zheyou 12 as a material.The accumulative amounts of nitrogen,phosphorus and potass... The effects of different nitrogen application levels on nutrient uptake and ammonia volatilization were studied with the rice cultivar Zheyou 12 as a material.The accumulative amounts of nitrogen,phosphorus and potassium in rice plants across all growth stages showed a trend to increase with increasing nitrogen application levels from 0 to 270 kg/hm 2,but decreased at nitrogen application levels exceeding 270 kg/hm 2.Moreover,the accumulative uptake of nitrogen,phosphorus and potassium by the rice plants was increased by application of organic manure in combination with 150 kg/hm 2 nitrogen.The nitrogen uptake was high during the jointing to heading stages.Correlation analysis showed that rice yield was positively correlated with the accumulative uptake of nitrogen,phosphorus and potassium by the rice plants.The highest correlation coefficient observed was between the amount of nitrogen uptake and rice yield.The rate and accumulative amounts of ammonia volatilization increased with increasing nitrogen fertilizer application level.Compared with other stages,the rate and accumulative amount of ammonia volatilization were higher after base fertilizer application.The ammonia volatilization rates in response to the nitrogen application levels of 270 kg/hm 2 and 330 kg/hm 2 were much higher than those in the other treatments.The loss of nitrogen through ammonia volatilization accounted for 23.9% of the total applied nitrogen at the nitrogen application level of 330 kg/hm 2. 展开更多
关键词 RICE nitrogen nutrient uptake ammonia volatilization
下载PDF
Abundance and Community Composition of Ammonia-Oxidizers in Paddy Soil at Different Nitrogen Fertilizer Rates 被引量:4
16
作者 SONG Ya-na LIN Zhi-min 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2014年第4期870-880,共11页
Ammonia oxidation, the first and rate-limiting step of nitrification, is carried out by both ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA). However, the relative importance of AOB and AOA to... Ammonia oxidation, the first and rate-limiting step of nitrification, is carried out by both ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA). However, the relative importance of AOB and AOA to nitrification in terrestrial ecosystems is not well understood. The aim of this study was to investigate the effect of the nitrogen input amount on abundance and community composition of AOB and AOA in red paddy soil. Soil samples of 10-20 cm (root layer soil) and 0-5 cm (surface soil) depths were taken from a red paddy. Rice in the paddy was fertilized with different rates of N as urea of N1 (75 kg N ha" yr-1), N2 (150 kg N ha~ yrl), N3 (225 kg N ha1 yrl) and CK (without fertilizers) in 2009, 2010 and 2011. Abundance and community composition of ammonia oxidizers was analyzed by real-time PCR and denaturing gradient gel electrophoresis (DGGE) based on amoA (the unit A of ammonia monooxygenase) gene. Archaeal amoA copies in N3 and N2 were significantly (P〈0.05) higher than those in CK and N1 in root layer soil or in surface soil under tillering and heading stages of rice, while the enhancement in bacterial amoA gene copies with increasing of N fertilizer rates only took on in root layer soil. N availability and soil NO3--N content increased but soil NH4+-N content didn't change with increasing of N fertilizer rates. Otherwise, the copy numbers of archaeal amoA gene were higher (P〈0.05) than those of bacterial amoA gene in root lary soil or in surface soil. Redundancy discriminate analysis based on DGGE bands showed that there were no obvious differs in composition of AOA or AOB communities in the field among different N fertilizer rates. Results of this study suggested that the abundance of ammonia-oxidizers had active response to N fertilizer rates and the response of AOA was more obvious than that of AOB. Similarity in the community composition of AOA or AOB among different N fertilizer rates indicate that the community composition of ammonia-oxidizers was relatively stable in the paddy soil at least in short term for three years. 展开更多
关键词 ammonia-oxidizing bacteria ammonia-oxidizing archaea nitrogen fertilizer rates paddy soil
下载PDF
Indoor experiment and numerical simulation study of ammonia-nitrogen migration rules in soil column 被引量:1
17
作者 ZHAN Jiang LI Wu-jin +1 位作者 LI Zhi-ping ZHAO Gui-zhang 《Journal of Groundwater Science and Engineering》 2018年第3期205-219,共15页
The riverbank soil is a natural purifying agent for the polluted river water(Riverbank filtration, RBF). This is of great importance to groundwater safety along the riverbank. This paper examines the migration and tra... The riverbank soil is a natural purifying agent for the polluted river water(Riverbank filtration, RBF). This is of great importance to groundwater safety along the riverbank. This paper examines the migration and transformation rules of ammonia-nitrogen in three typical types of sand soil using the indoor leaching experiment of soil column, and then makes comparison with the indoor experiment results in combination with the numerical simulation method. The experiment process shows that the change in ammonia-nitrogen concentration goes through three stages including "removal-water saturation-saturation". As the contents of clay particles in soil sample increase, the removal of ammonia-nitrogen from soil sample will take more time and gain higher ratio. During the removal period, the removal ratio of Column 1, Column 2 and Column 3 averages 68.8%(1-12 d), 74.6%(1-22 d) and 91.1%(1-26 d). The ammonia-nitrogen removal ratio shows no noticeable change as the depth of soil columns varies. But it is found that the ammonia-nitrogen removal ratio is the least of the whole experiment when the soil columns are at the depth of 15 cm. It can be preliminary inferred that the natural purifying performance of soil along the river for ammonia-nitrogen in river water mainly depends on the proportion of fine particles in soil. HYDRUS-1D model is used to simulate this experiment process, analyze the change of the bottom observation holes by time and depth in three columns(the tenth day), and make comparison with the experiment result. The coefficients of determination for fitting curves of Column 1, Column 2 and Column 3 are 0.953, 0.909, 0.882 and 0.955, 0.740, 0.980 separately. Besides, this paper examines the contribution of absorption, mineralization and nitrification in the simulation process. In the early removal stage, mineralization plays a dominant role and the maximum contribution rate of mineralization is 99%. As time goes by, absorption starts to function and gradually assumes a dominant position. In the middle and late removal stage, nitrification in Column 1 and Column 2 makes more contribution than mineralization. So the experiment result of the ammonia-nitrogen concentration is 0.6% and 2.4% lower than that in effluent and the maximum contribution ratio of nitrification is -4.53% and -5.10% respectively when only the function of absorption is considered. The mineralization in Column 1 and Column 2 in the middle and late removal stage still plays a more important role than nitrification. So the experiment result is 1.4% higher than that in effluent and the maximum contribution ratio of nitrification is -2.51% when only the function of absorption is considered. Therefore, absorption, mineralization and nitrification make different contributions during different part of the stage. This means that the natural purifying performance of soil along the river for ammonia-nitrogen in river water not only depends on the proportion of fine particles in soil, but depends on the mineralization and nitrification environment. This can offer some insights into the protection and recovery of groundwater along the riverbank. 展开更多
关键词 Soil COLUMN ammonia-nitrogen MIGRATION RULE HYDRUS-1D Numerical simulation MINERALIZATION NITRIFICATION
下载PDF
Analysis of Ammonia Nitrogen Content in Water Based on Weighted Least Squares Support Vector Machine (WLSSVM) Algorithm 被引量:2
18
作者 Jinwu Ju Lanying Wang 《Journal of Software Engineering and Applications》 2016年第2期45-51,共7页
Determination of ammonia nitrogen content in water is the basic item of the environmental water pollution, and is the key index to evaluate the water quality. This article designs a water quality monitoring system bas... Determination of ammonia nitrogen content in water is the basic item of the environmental water pollution, and is the key index to evaluate the water quality. This article designs a water quality monitoring system based on the on-line automatic ammonia nitrogen monitoring system, and establishes a forecasting model based on the weighted least squares support vector machine algorithm. The weighted least squares support vector machine algorithm increases the weight parameter setting, improves the speed and accuracy of prediction learning, and improves the robustness. In this article, a comparison between neural network model and weighted least square support vector machine model is made, which shows that the weighted least squares support vector machine model has better prediction accuracy. 展开更多
关键词 Support Vector Machine Water Quality ammonia nitrogen Forecasting Model
下载PDF
Effects of Different Concentrations of Ammonia Nitrogen on N_2O Emission in the Process of Partial Nitrification
19
作者 TIAN Lin KONG Qiang +1 位作者 ZHANG Jian MIAO Ming-sheng 《Meteorological and Environmental Research》 CAS 2012年第12期68-70,76,共4页
[Objective] The study aimed to discuss the effects of different concentrations of ammonia nitrogen on N2O emission in the process of partial nitrification. [Method] By using a sequencing batch biofilm reactor (SBBR) u... [Objective] The study aimed to discuss the effects of different concentrations of ammonia nitrogen on N2O emission in the process of partial nitrification. [Method] By using a sequencing batch biofilm reactor (SBBR) under intermittent aeration, the influences of various concentrations of influent ammonia nitrogen on nitrous oxide (N2O) emission from partial nitrification were analyzed. [Result] When the concentration of influent ammonia nitrogen varied from 200 to 400 mg/L, the changing trends of DO and ORP value were consistent during the process of partial nitrification, and the concentration ratio of NO-2-N to NH+4-N in effluent water reached 1∶1, with lower NO-3-N level. In addition, ammonia nitrogen concentration in the influent had significant effects on N2O emission in the process of partial nitrification, that is, the higher the ammonia nitrogen concentration, the more the N2O emission. When ammonia nitrogen concentration was 400 mg/L, N2O emission was up to about 37 mg. [Conclusion] N2O emission in the process of partial nitrification might be related to the concentrations of NH+4 and NO-2. 展开更多
关键词 ammonia nitrogen Partial nitrification SBBR N2O China
下载PDF
Experimental Study on Treatment of Ammonia Nitrogen in Landfill Leachate Flowing from MBR Using Catalytic Wet Peroxide Oxidation
20
作者 Lihua Teng Jianping Wang +1 位作者 Qianguang Mao Yun Le 《Meteorological and Environmental Research》 CAS 2013年第4期49-52,55,共5页
Active iron catalysts with 5A molecular sieve as the carrier were prepared firstly, and then were used in the treatment of ammonia nitrogen in landfill leachate pretreated by MBR by using CWPO, finally the effects of ... Active iron catalysts with 5A molecular sieve as the carrier were prepared firstly, and then were used in the treatment of ammonia nitrogen in landfill leachate pretreated by MBR by using CWPO, finally the effects of preparation process of catalysts, assistants and reaction conditions on the removal rate of ammonia nitrogen were analyzed. The results show that the preparation process of catalysts and assistants had great effects on catalytic activity; when steeping fluid concentration was 2 mol/L and 0.01 mol/L cerium nitrate was used as an assistant, Fe-Ce/5A catalyst roasted for 3 h at 400 ~C had a good catalytic effect. As 10 g of Fe-Ce/5A catalyst was added to water sample, and landfill leachate pretreated by MBR reacted with 15 ml of H2 02 for 30 min at 60 ~C, the removal rate of ammonia nitrogen was up to 90.8%, that is, ammonia nitrogen concentra- tion decreased from 253 to 23 mg/L, reaching the national emission standard. Besides, the kinetic analysis of ammonia nitrogen removal reveals that the removal reaction of ammonia nitrogen conformed with pseudo first order kinetic equation. Thus, it is feasible to use this method to deeply treat landfill leachate pretreated by MBR. 展开更多
关键词 Catalytic Wet Peroxide Oxidation (CWPO) ammonia nitrogen Removal rate China
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部