Nickel nanometer catalyst thin films were prepared on SiO2/Si substrates using sputtering coater. The effects of ammonia pretreatment on the catalyst films from continuous film to the nanoparticles were investigated. ...Nickel nanometer catalyst thin films were prepared on SiO2/Si substrates using sputtering coater. The effects of ammonia pretreatment on the catalyst films from continuous film to the nanoparticles were investigated. The nanostructures of the Ni thin films as a function of the catalyst film original thickness, the pretreatment time and temperature were discussed. The optimum parameters of etching process were obtained, and the functional mechanism of ammonia was primarily analyzed. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were used to evaluate the obtained nanoparticles. It is demonstrated that the controlled size and density distribution of the nanoparticles can be achieved by employing ammonia etching method.展开更多
基金Funded by the State Key Program of National Natural Science Foundation of China (No. 50435030)the National Natural Science Foundation of China (No. 50775104)
文摘Nickel nanometer catalyst thin films were prepared on SiO2/Si substrates using sputtering coater. The effects of ammonia pretreatment on the catalyst films from continuous film to the nanoparticles were investigated. The nanostructures of the Ni thin films as a function of the catalyst film original thickness, the pretreatment time and temperature were discussed. The optimum parameters of etching process were obtained, and the functional mechanism of ammonia was primarily analyzed. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were used to evaluate the obtained nanoparticles. It is demonstrated that the controlled size and density distribution of the nanoparticles can be achieved by employing ammonia etching method.