Background: Water dropwort (Oenanthejavanica) as a popular traditional medicine in Asia shows various biological properties including antioxidant activity. In this study, we firstly examined the neuroprotective eff...Background: Water dropwort (Oenanthejavanica) as a popular traditional medicine in Asia shows various biological properties including antioxidant activity. In this study, we firstly examined the neuroprotective effect of Oenanthejavanica extract (OJE) in the hippocampal comus ammonis 1 region (CA 1 region) of the gerbil subjected to transient cerebral ischemia. Methods: Gerbils were established by the occlusion of common carotid arteries for 5 min. The neuroprotective effect of OJE was estimated by cresyl violet staining. In addition, 4 antioxidants (copper, zinc superoxide dismutase [SOD], manganese SOD, catalase, and glutathione peroxidase) immunoreactivities were investigated by immunohistochemistry. Results: Pyramidal neurons in the CA1 region showed neuronal death at 5 days postischemia; at this point in time, all antioxidants immunoreactivities disappeared in CA1 pyramidal neurons and showed 100 mg/kg, OJE protected CA 1 pyramidal neurons from ischemic damage in many nonpyramidal cells. Treatment with 200 mg/kg, not In addition, 200 mg/kg OJE treatment increased or maintained antioxidants immunoreactivities. Especially, among the antioxidants, glutathione peroxidase immunoreactivity was effectively increased in the CA 1 pyramidal neurons of the OJE-treated sham-operated and ischemia-operated groups. Conclusion: Our present results indicate that treatment with OJE can protect neurons from transient ischemic damage and that the neuroprotective effect may be closely associated with increased or maintained intracellular antioxidant enzymes by OJE.展开更多
文摘Background: Water dropwort (Oenanthejavanica) as a popular traditional medicine in Asia shows various biological properties including antioxidant activity. In this study, we firstly examined the neuroprotective effect of Oenanthejavanica extract (OJE) in the hippocampal comus ammonis 1 region (CA 1 region) of the gerbil subjected to transient cerebral ischemia. Methods: Gerbils were established by the occlusion of common carotid arteries for 5 min. The neuroprotective effect of OJE was estimated by cresyl violet staining. In addition, 4 antioxidants (copper, zinc superoxide dismutase [SOD], manganese SOD, catalase, and glutathione peroxidase) immunoreactivities were investigated by immunohistochemistry. Results: Pyramidal neurons in the CA1 region showed neuronal death at 5 days postischemia; at this point in time, all antioxidants immunoreactivities disappeared in CA1 pyramidal neurons and showed 100 mg/kg, OJE protected CA 1 pyramidal neurons from ischemic damage in many nonpyramidal cells. Treatment with 200 mg/kg, not In addition, 200 mg/kg OJE treatment increased or maintained antioxidants immunoreactivities. Especially, among the antioxidants, glutathione peroxidase immunoreactivity was effectively increased in the CA 1 pyramidal neurons of the OJE-treated sham-operated and ischemia-operated groups. Conclusion: Our present results indicate that treatment with OJE can protect neurons from transient ischemic damage and that the neuroprotective effect may be closely associated with increased or maintained intracellular antioxidant enzymes by OJE.