To obtain the appropriate conditions for eliminating Fe3+from NiSO4 solution, the digestion solution of the clinker was used as raw material, which was obtained from roasting the nickel oxide ore with (NH4)2SO4. Th...To obtain the appropriate conditions for eliminating Fe3+from NiSO4 solution, the digestion solution of the clinker was used as raw material, which was obtained from roasting the nickel oxide ore with (NH4)2SO4. The ammonium jarosite was successfully synthesized from the solution with analytic grade NH4HCO3. The effects of reaction temperature, reaction time, end pH value of reaction on the removal rate of iron were investigated, and the effect of the initial concentration of Fe3+was also discussed. All of those factors had significant effects on the removal rate of Fe3+, among which the reaction temperature was the most prominent. The appropriate reaction conditions were concluded as follows: reaction temperature 95 ℃ reaction time 3.5 h, end pH value of reaction 2.5 at initial concentration of Fe3+19.36 g/L. The physical aspect of (NH4)2Fe6(SO4)4(OH)12 was cluster figure composed of sheet or prismatic particles with smooth surface.展开更多
Molecular dynamics simulations were carried out to study the configuration energy and radial distribution functions of mmonium dihydrogen phosphate solution at different temperatures. The dihydrogen phosphate ion was ...Molecular dynamics simulations were carried out to study the configuration energy and radial distribution functions of mmonium dihydrogen phosphate solution at different temperatures. The dihydrogen phosphate ion was treated as a seven-site model and the ammonium ion was regarded as a five-site model, while a simple-point-charge model for water molecule. An unusually local particle number density fluctuation was observed in the system at saturation temperature. It can be found that the potential energy increases slowly with the temperature from 373 K to 404 K, which indicates that the ammonium dihydrogen phosphate has partly decomposed. The radial distribution function between the hydrogen atom of ammonium cation and the oxygen atom of dihydrogen phosphate ion at three different temperatures shows obvious difference, which indicates that the average H-bond number changes obviously with the temperature. The temperature has an influence on the combination between hydrogen atoms and phosphorus atoms of dihydrogen phosphate ion and there are much more growth units at saturated solutions.展开更多
A nutrition solution experiment was conducted over two months to investigate the response of vegetable crops to high concentrations of ammonium, using lettuce (Lactuca sativa L. cv. Angustana Irish) as a test crop. ...A nutrition solution experiment was conducted over two months to investigate the response of vegetable crops to high concentrations of ammonium, using lettuce (Lactuca sativa L. cv. Angustana Irish) as a test crop. Ammonium concentrations were designed in 5 levels, ranging from 12 mmol N L^-1 to 22 mmol N L^-1 and local tap water was used as water source. At the first culture stage (0-9 days), lettuce plants maintained normal growth while the lettuce roots were increasingly impaired. During the subsequent three stages the root structure was greatly damaged, and roots became brown or black through continuous supply of high concentration of ammonium. However, there was no obvious reduction of the aboveground biomass of the plants in the high ammonium treatments compared to those supplied with nitrate alone. In contrast to results obtained in another experiment from us with distilled water, the detrimental effect of high ammonium concentration on lettuce growth was greatly alleviated. Based on the results, it was postulated that the small amount of nitrate and the higher amount of bicarbonate existed in the tap water might mitigate the adverse effects of high ammonium N. The higher bicarbonate content in water and soil has usually been regarded as a major constraint factor limiting plant growth in calcareous soil areas. However, the reaction of bicarbonate to ammonium might produce positively interactive effect on reduction of both damages. The lettuce plants grown in ammonium solutions took up less P, K, Fe, Mn and Cu and more Ca than those grown in the nitrate nutrient solution. In conclusion, the results indicated that the N form imposed an obvious influence on absorption of cations and anions. Supplying ammonium-N stimulated transport of Ca, Mg and Mn to shoots of lettuce.展开更多
The effect of varying the temperature and the concentration of ammonium nitrate solution on the stress corrosion cracking (SCC) susceptibility of mild steel is studied. An increase in the temperature causes a decrease...The effect of varying the temperature and the concentration of ammonium nitrate solution on the stress corrosion cracking (SCC) susceptibility of mild steel is studied. An increase in the temperature causes a decrease in the stress corrosion life. It appears that the susceptibility in the range 368 K to 380 K was greater than at other temperatures. Near the boiling point corrosion and stress corrosion occurs, at the boiling point, the cracking was associated with a high rate of general corrosion. Microscopic examination after stress corrosion testing in 10Wt%, 20Wt%, and 52Wt% NH4NO3 solution revealed that in all cases there was severe intergranular attack, especially at the high concentration.展开更多
The separation and recovery of V from chromium-containing vanadate solution were investigated by a cyclic metallurgical process including selective precipitation of vanadium,vanadium leaching and preparation of vanadi...The separation and recovery of V from chromium-containing vanadate solution were investigated by a cyclic metallurgical process including selective precipitation of vanadium,vanadium leaching and preparation of vanadium pentoxide.By adding Ca(OH)_(2) and ball milling,not only the V in the solution can be selectively precipitated,but also the leaching kinetics of the precipitate is significantly improved.The precipitation efficiency of V is 99.59%by adding Ca(OH)_(2) according to Ca/V molar ratio of 1.75:1 into chromium-containing vanadate solution and ball milling for 60 min at room temperature,while the content of Cr in the precipitate is 0.04%.The leaching rate of V reaches 99.35%by adding NaHCO_(3) into water according to NaHCO_(3)/V molar ratio of 2.74:1 to leach V from the precipitate with L/S ratio of 4:1 mL/g and stirring for 60 min at room temperature.The crystals of NH_(4)VO_(3) are obtained by adjusting the leaching solution pH to be 8.0 with CO2 and then adding NH_(4)HCO_(3) according to NH_(4)HCO_(3)/NaVO_(3) molar ratio of 1:1 and stirring for 8 h at room temperature.After filtration,the crystallized solution containing ammonia is reused to leach the precipitate of calcium vanadates,and the leaching efficiency of V is>99%after stirring for 1 h at room temperature.Finally,the product of V_(2)O_(5) with purity of 99.6%is obtained by calcining the crystals at 560℃ for 2 h.展开更多
A precursor of cobaltous dihydroxycarbonate was firstly prepared by precipitation reaction of cobalt sulfate solution and ammonium carbonate solution,and then a hydrothermal process for the precursor was conducted to ...A precursor of cobaltous dihydroxycarbonate was firstly prepared by precipitation reaction of cobalt sulfate solution and ammonium carbonate solution,and then a hydrothermal process for the precursor was conducted to obtain the spherical cobalt carbonate with low sulfur content.The experimental results show that the feeding method,final p H value of the precipitation reaction slurry and the concentration of the cobalt sulfate solution have obvious effects on the sulfur content,morphology and particle size distribution of the precursor.The sulfur content of the precursor is 0.0115 wt.%under the optimized conditions.The hydrothermal treatment with temperatures of 125-150℃can transform the precursor of cobaltous dihydroxycarbonate into spherical cobalt carbonate and decrease the sulfur content to 0.0030 wt.%in the obtained product.展开更多
This work investigates the relative aggressiveness of nitrate solutions at different pH values on mild steel towards stress corrosion cracking (SCC) and general corrosion. Electrochemical behavior and stress corrosion...This work investigates the relative aggressiveness of nitrate solutions at different pH values on mild steel towards stress corrosion cracking (SCC) and general corrosion. Electrochemical behavior and stress corrosion cracking sus-ceptibility measurements were carried out in 52 Wt% ammonium nitrate solutions at 368° K and various pH values ranging from 0.77 to 9.64. Constant load stress corrosion test at 90% yield stress was conducted. Tested specimens were prepared and examined using the scanning electron microscope (SEM). The potentiodynamic polarization curves for different pH values again emphasized the validity of the gravimetric measurements and hence the mechanism of cracking was attributed to the stress that assisted the dissolution process.展开更多
This paper describes a combinatorial Synthesis of the Mannich Bases in Solution through the Mannich reaction using 3 ketones, 5 amines and formaldehyde in solution and hydrochloride as a catalyst and then using a macr...This paper describes a combinatorial Synthesis of the Mannich Bases in Solution through the Mannich reaction using 3 ketones, 5 amines and formaldehyde in solution and hydrochloride as a catalyst and then using a macroporous quarterized ammonium resin (CO32- form) as a scavenge agent to remove the acid catalyst when the Mannich reaction is completed. It was found by GC/MS analysis that the symmetrical ketone, such as acetone, in the Mannich reaction mainly produces one Mannich base; while the asymmetrical ketone, such as 2-pentanone, gives two Mannich bases. The reactivity depends on the tereo-hinder of both ketones and amines.展开更多
The tungsten trioxide(WO3) thin films were firstly prepared by spin-coating-pyrolysis methods using the ammonium metatungstate((NH4)6H2W12O40)DMF/water solution, and successfully applied as the efficient compact...The tungsten trioxide(WO3) thin films were firstly prepared by spin-coating-pyrolysis methods using the ammonium metatungstate((NH4)6H2W12O40)DMF/water solution, and successfully applied as the efficient compact layers for the planar perovskite solar cells. The influence of the WO3 film thickness and the rinsing treatment of CH_3NH_3 PbI_3 thin film with isopropanol on the photovoltaic performance of the corresponding perovskite solar cells was systematically investigated. The results revealed that the perovskite solar cell with a 62 nm thick WO3 compact layer achieved a photoelectric conversion efficiency of 5.72%, with a short circuit photocurrent density of 17.39 mA/cm^2, an open circuit voltage of 0.58 V and a fill factor of 0.57. The photoelectric conversion efficiency was improved from 5.72% to 7.04% by the isopropanol rinsing treatment.展开更多
基金Project(51204054)supported by the National Natural Science Foundation of ChinaProject(N110402012)supported by Fundamental Research Funds for the Central Universities,ChinaProject(2007CB613603)supported by the National Basic Research Program of China
文摘To obtain the appropriate conditions for eliminating Fe3+from NiSO4 solution, the digestion solution of the clinker was used as raw material, which was obtained from roasting the nickel oxide ore with (NH4)2SO4. The ammonium jarosite was successfully synthesized from the solution with analytic grade NH4HCO3. The effects of reaction temperature, reaction time, end pH value of reaction on the removal rate of iron were investigated, and the effect of the initial concentration of Fe3+was also discussed. All of those factors had significant effects on the removal rate of Fe3+, among which the reaction temperature was the most prominent. The appropriate reaction conditions were concluded as follows: reaction temperature 95 ℃ reaction time 3.5 h, end pH value of reaction 2.5 at initial concentration of Fe3+19.36 g/L. The physical aspect of (NH4)2Fe6(SO4)4(OH)12 was cluster figure composed of sheet or prismatic particles with smooth surface.
文摘Molecular dynamics simulations were carried out to study the configuration energy and radial distribution functions of mmonium dihydrogen phosphate solution at different temperatures. The dihydrogen phosphate ion was treated as a seven-site model and the ammonium ion was regarded as a five-site model, while a simple-point-charge model for water molecule. An unusually local particle number density fluctuation was observed in the system at saturation temperature. It can be found that the potential energy increases slowly with the temperature from 373 K to 404 K, which indicates that the ammonium dihydrogen phosphate has partly decomposed. The radial distribution function between the hydrogen atom of ammonium cation and the oxygen atom of dihydrogen phosphate ion at three different temperatures shows obvious difference, which indicates that the average H-bond number changes obviously with the temperature. The temperature has an influence on the combination between hydrogen atoms and phosphorus atoms of dihydrogen phosphate ion and there are much more growth units at saturated solutions.
基金This is part work of the project(30230230)supported by the National Natural Science Foundation of China(NFSC).
文摘A nutrition solution experiment was conducted over two months to investigate the response of vegetable crops to high concentrations of ammonium, using lettuce (Lactuca sativa L. cv. Angustana Irish) as a test crop. Ammonium concentrations were designed in 5 levels, ranging from 12 mmol N L^-1 to 22 mmol N L^-1 and local tap water was used as water source. At the first culture stage (0-9 days), lettuce plants maintained normal growth while the lettuce roots were increasingly impaired. During the subsequent three stages the root structure was greatly damaged, and roots became brown or black through continuous supply of high concentration of ammonium. However, there was no obvious reduction of the aboveground biomass of the plants in the high ammonium treatments compared to those supplied with nitrate alone. In contrast to results obtained in another experiment from us with distilled water, the detrimental effect of high ammonium concentration on lettuce growth was greatly alleviated. Based on the results, it was postulated that the small amount of nitrate and the higher amount of bicarbonate existed in the tap water might mitigate the adverse effects of high ammonium N. The higher bicarbonate content in water and soil has usually been regarded as a major constraint factor limiting plant growth in calcareous soil areas. However, the reaction of bicarbonate to ammonium might produce positively interactive effect on reduction of both damages. The lettuce plants grown in ammonium solutions took up less P, K, Fe, Mn and Cu and more Ca than those grown in the nitrate nutrient solution. In conclusion, the results indicated that the N form imposed an obvious influence on absorption of cations and anions. Supplying ammonium-N stimulated transport of Ca, Mg and Mn to shoots of lettuce.
文摘The effect of varying the temperature and the concentration of ammonium nitrate solution on the stress corrosion cracking (SCC) susceptibility of mild steel is studied. An increase in the temperature causes a decrease in the stress corrosion life. It appears that the susceptibility in the range 368 K to 380 K was greater than at other temperatures. Near the boiling point corrosion and stress corrosion occurs, at the boiling point, the cracking was associated with a high rate of general corrosion. Microscopic examination after stress corrosion testing in 10Wt%, 20Wt%, and 52Wt% NH4NO3 solution revealed that in all cases there was severe intergranular attack, especially at the high concentration.
基金The authors are grateful for the financial supports from the National Natural Science Foundation of China(51974369)the Postgraduate Research Innovation Project of Central South University,China(2019zzts244).
文摘The separation and recovery of V from chromium-containing vanadate solution were investigated by a cyclic metallurgical process including selective precipitation of vanadium,vanadium leaching and preparation of vanadium pentoxide.By adding Ca(OH)_(2) and ball milling,not only the V in the solution can be selectively precipitated,but also the leaching kinetics of the precipitate is significantly improved.The precipitation efficiency of V is 99.59%by adding Ca(OH)_(2) according to Ca/V molar ratio of 1.75:1 into chromium-containing vanadate solution and ball milling for 60 min at room temperature,while the content of Cr in the precipitate is 0.04%.The leaching rate of V reaches 99.35%by adding NaHCO_(3) into water according to NaHCO_(3)/V molar ratio of 2.74:1 to leach V from the precipitate with L/S ratio of 4:1 mL/g and stirring for 60 min at room temperature.The crystals of NH_(4)VO_(3) are obtained by adjusting the leaching solution pH to be 8.0 with CO2 and then adding NH_(4)HCO_(3) according to NH_(4)HCO_(3)/NaVO_(3) molar ratio of 1:1 and stirring for 8 h at room temperature.After filtration,the crystallized solution containing ammonia is reused to leach the precipitate of calcium vanadates,and the leaching efficiency of V is>99%after stirring for 1 h at room temperature.Finally,the product of V_(2)O_(5) with purity of 99.6%is obtained by calcining the crystals at 560℃ for 2 h.
基金Project(51874372)supported by the National Natural Science Foundation of China
文摘A precursor of cobaltous dihydroxycarbonate was firstly prepared by precipitation reaction of cobalt sulfate solution and ammonium carbonate solution,and then a hydrothermal process for the precursor was conducted to obtain the spherical cobalt carbonate with low sulfur content.The experimental results show that the feeding method,final p H value of the precipitation reaction slurry and the concentration of the cobalt sulfate solution have obvious effects on the sulfur content,morphology and particle size distribution of the precursor.The sulfur content of the precursor is 0.0115 wt.%under the optimized conditions.The hydrothermal treatment with temperatures of 125-150℃can transform the precursor of cobaltous dihydroxycarbonate into spherical cobalt carbonate and decrease the sulfur content to 0.0030 wt.%in the obtained product.
文摘This work investigates the relative aggressiveness of nitrate solutions at different pH values on mild steel towards stress corrosion cracking (SCC) and general corrosion. Electrochemical behavior and stress corrosion cracking sus-ceptibility measurements were carried out in 52 Wt% ammonium nitrate solutions at 368° K and various pH values ranging from 0.77 to 9.64. Constant load stress corrosion test at 90% yield stress was conducted. Tested specimens were prepared and examined using the scanning electron microscope (SEM). The potentiodynamic polarization curves for different pH values again emphasized the validity of the gravimetric measurements and hence the mechanism of cracking was attributed to the stress that assisted the dissolution process.
基金National Natural Science Foundation of China (29674915, 29844001).
文摘This paper describes a combinatorial Synthesis of the Mannich Bases in Solution through the Mannich reaction using 3 ketones, 5 amines and formaldehyde in solution and hydrochloride as a catalyst and then using a macroporous quarterized ammonium resin (CO32- form) as a scavenge agent to remove the acid catalyst when the Mannich reaction is completed. It was found by GC/MS analysis that the symmetrical ketone, such as acetone, in the Mannich reaction mainly produces one Mannich base; while the asymmetrical ketone, such as 2-pentanone, gives two Mannich bases. The reactivity depends on the tereo-hinder of both ketones and amines.
基金Project supported by the National Natural Science Foundation of China(Nos.51472071,512720616,51072043)the National Basic Research Program of China(No.2011CBA00700)
文摘The tungsten trioxide(WO3) thin films were firstly prepared by spin-coating-pyrolysis methods using the ammonium metatungstate((NH4)6H2W12O40)DMF/water solution, and successfully applied as the efficient compact layers for the planar perovskite solar cells. The influence of the WO3 film thickness and the rinsing treatment of CH_3NH_3 PbI_3 thin film with isopropanol on the photovoltaic performance of the corresponding perovskite solar cells was systematically investigated. The results revealed that the perovskite solar cell with a 62 nm thick WO3 compact layer achieved a photoelectric conversion efficiency of 5.72%, with a short circuit photocurrent density of 17.39 mA/cm^2, an open circuit voltage of 0.58 V and a fill factor of 0.57. The photoelectric conversion efficiency was improved from 5.72% to 7.04% by the isopropanol rinsing treatment.