Ammonium dinitramide(ADN),which has the advantages of high energy density,no halogen and low characteristic signal,is not only considered as a new high-energy oxidizer that is expected to replace the traditional oxidi...Ammonium dinitramide(ADN),which has the advantages of high energy density,no halogen and low characteristic signal,is not only considered as a new high-energy oxidizer that is expected to replace the traditional oxidizer ammonium perchlorate(AP)in solid propellants,but also a good performance explosive in itself.However,due to the strong hygroscopicity of ADN,its application in solid propellants and explosives is greatly limited.Solving the hygroscopicity of ADN is the key to realize the wide application of ADN.In this paper,we systematically review the research progress of anti-hygroscopic strategies of ADN coating.The surface coating methods are focusing on solvent volatilization,solvent-non-solvent,melt crystallization and atomic layer deposition technology.The characteristics of the different methods are compared and analyzed,and the basis for the classification and selection of the coating materials are introduced in detail.In addition,the feasibility of material for surface coating of ADN is evaluated by several compatibility analysis methods.It is highly expected that the liquid phase method(solvent volatilization method,solvent-non-solvent method)would be the promising method for future ADN coating because of its effective,safety and facile operation.Furthermore,polymer materials,are the preferred coating materials due to their high viscosity,easy adhesion,good anti-hygroscopic effect,and heat resistance,which make ADN weak hygroscopicity,less sensitive,easier to preserve and good compatibility.展开更多
Although ammonium dinitramide(ADN)has been targeted as a potential green monopropellant in future space vehicles,its application potential in Micro-electrical–Mechanical System(MEMS)thrusters or microthrusters has be...Although ammonium dinitramide(ADN)has been targeted as a potential green monopropellant in future space vehicles,its application potential in Micro-electrical–Mechanical System(MEMS)thrusters or microthrusters has been seldom reported in open literature.In this paper,electrolytic decomposition of Ammonium Dinitramide(ADN)-based liquid monopropellant FLP-103 was carried out in an open chamber and MEMS thrusters were fabricated from poly-dimethylsiloxane(PDMS)to characterize the power consumption.Two thrust measurement methods were employed to investigate the electrolytic decomposition of FLP-103 in MEMS microthrusters.The results show that the monopropellant can be successfully ignited at room temperature through 80 V,0.1 A(8 W)using copper wire as electrodes.In the current thruster design,low thrust was obtained at FLP-103 flowrate of 40μl·min^(-1)but it generated the highest specific impulse,Isp,among all the flowrates tested.The experiments successfully demonstrated the potential application of electrolytic decomposition of FLP-103 in MEMS thrusters.展开更多
基金financially supported by the National Natural Science Foundation of China(Grant Nos.21805139,12102194 and 22005144)the Joint Funds of the National Natural Science Foundation of China(Grant No.U2141202)+1 种基金the Fundamental Research Funds for the Central Universities(Grant No.30921011203)the Young Elite Scientists Sponsorship Program by CAST(YESS Program,2021QNRC001)。
文摘Ammonium dinitramide(ADN),which has the advantages of high energy density,no halogen and low characteristic signal,is not only considered as a new high-energy oxidizer that is expected to replace the traditional oxidizer ammonium perchlorate(AP)in solid propellants,but also a good performance explosive in itself.However,due to the strong hygroscopicity of ADN,its application in solid propellants and explosives is greatly limited.Solving the hygroscopicity of ADN is the key to realize the wide application of ADN.In this paper,we systematically review the research progress of anti-hygroscopic strategies of ADN coating.The surface coating methods are focusing on solvent volatilization,solvent-non-solvent,melt crystallization and atomic layer deposition technology.The characteristics of the different methods are compared and analyzed,and the basis for the classification and selection of the coating materials are introduced in detail.In addition,the feasibility of material for surface coating of ADN is evaluated by several compatibility analysis methods.It is highly expected that the liquid phase method(solvent volatilization method,solvent-non-solvent method)would be the promising method for future ADN coating because of its effective,safety and facile operation.Furthermore,polymer materials,are the preferred coating materials due to their high viscosity,easy adhesion,good anti-hygroscopic effect,and heat resistance,which make ADN weak hygroscopicity,less sensitive,easier to preserve and good compatibility.
基金Supported by the Project of Ministry of Science,Technology and Innovation,Malaysia(MOSTI)(No.04-02-12-SF0160)
文摘Although ammonium dinitramide(ADN)has been targeted as a potential green monopropellant in future space vehicles,its application potential in Micro-electrical–Mechanical System(MEMS)thrusters or microthrusters has been seldom reported in open literature.In this paper,electrolytic decomposition of Ammonium Dinitramide(ADN)-based liquid monopropellant FLP-103 was carried out in an open chamber and MEMS thrusters were fabricated from poly-dimethylsiloxane(PDMS)to characterize the power consumption.Two thrust measurement methods were employed to investigate the electrolytic decomposition of FLP-103 in MEMS microthrusters.The results show that the monopropellant can be successfully ignited at room temperature through 80 V,0.1 A(8 W)using copper wire as electrodes.In the current thruster design,low thrust was obtained at FLP-103 flowrate of 40μl·min^(-1)but it generated the highest specific impulse,Isp,among all the flowrates tested.The experiments successfully demonstrated the potential application of electrolytic decomposition of FLP-103 in MEMS thrusters.