期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Molecular Basis and Regulation of Ammonium Transporter in Rice 被引量:18
1
作者 LI Bao-zhen Mike MERRICK +4 位作者 LI Su-mei LI Hong-ying ZHU Shu-wen SHI Wei-ming Su Yan-hua 《Rice science》 SCIE 2009年第4期314-322,共9页
Rice grows in flooded paddy fields and takes up ammonium as the preferred nitrogen (N) source. Ammonium uptake is facilitated by a family of integral membrane proteins known as ammonium transporters found in all dom... Rice grows in flooded paddy fields and takes up ammonium as the preferred nitrogen (N) source. Ammonium uptake is facilitated by a family of integral membrane proteins known as ammonium transporters found in all domains of life. However, the molecular mechanism and functional characteristics of the ammonium transporters (AMT) in rice have not been determined in detail yet. In this review, we report a genome-wide search for AMT genes in rice, resulting in the increase of the number of potential AMT proteins to at least 12, including members of both the alpha and beta sub-groups. Analysis of the predicted protein sequences for the 12 OsAMT proteins identified many conserved phosphorylation sites in both the alpha and beta group members, which could potentially play a role in controlling the activity of the transporters. Present knowledge of the expression of rice AMT genes is also summarized in detail. Future studies should focus on the structural and functional characteristics of OsAMT proteins to provide insight into the mechanism of ammonium uptake and its regulation in rice. Such research could improve utilization and decrease wastage of N fertilizer in rice cultivation. 展开更多
关键词 RICE ammonium transporter expression regulation phosphorylation site
下载PDF
Ammonium-dependent regulation of ammonium transporter ZmAMT1s expression conferred by glutamine levels in roots of maize 被引量:1
2
作者 HUI Jing LIU Zhi +5 位作者 DUAN Feng-ying ZHAO Yang LI Xue-lian AN Xia WU Xiang-yu YUAN Li-xing 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2022年第8期2413-2421,共9页
In maize,two root epidermis-expressed ammonium transporters ZmAMT1;1a and ZmAMT1;3 play major roles in highaffinity ammonium uptake.However,the transcriptional regulation of ZmAMT1s in roots for ensuring optimal ammon... In maize,two root epidermis-expressed ammonium transporters ZmAMT1;1a and ZmAMT1;3 play major roles in highaffinity ammonium uptake.However,the transcriptional regulation of ZmAMT1s in roots for ensuring optimal ammonium acquisition remains largely unknown.Here,using a split root system we showed that ZmAMT1;1a and ZmAMT1;3transcript levels were induced by localized ammonium supply to nitrogen-deficient roots.This enhanced expression of Zm AMT1s correlated with increases in ^(15)NH_(4)^(+)influx rates and tissue glutamine concentrations in roots.When ammonium was supplied together with methionine sulfoximine,an inhibitor of glutamine synthase,ammonium-induced expression of ZmAMT1s disappeared,suggesting that glutamine rather than ammonium itself regulated ZmAMT1s expression.When glutamine was supplied to nitrogen-deficient roots,expression levels of ZmAMT1s were enhanced,and negative feedback regulation could subsequently occur by supply of glutamine at a high level.Thus,our results indicated an ammonium-dependent regulation of ZmAMT1s at transcript levels,and a dual role of glutamine was suggested in the regulation of ammonium uptake in maize roots. 展开更多
关键词 ammonium transporter pH GLUTAMINE maize roots nitrogen transcriptional regulation
下载PDF
The OsAMT1.1 gene functions in ammonium uptake and ammoniumepotassium homeostasis over low and high ammonium concentration ranges 被引量:18
3
作者 Chang Li Zhong Tang +3 位作者 Jia Wei Hongye Qu Yanjie Xie Guohua Xu 《Journal of Genetics and Genomics》 SCIE CAS CSCD 2016年第11期639-649,共11页
Rice (Oryza sativa) grown in paddy fields is an ammonium (NH4^+)-preferring crop; however, its AMT-type NH4^+ transporters that mediate root N acquisition have not been well characterized yet. In this study, we ... Rice (Oryza sativa) grown in paddy fields is an ammonium (NH4^+)-preferring crop; however, its AMT-type NH4^+ transporters that mediate root N acquisition have not been well characterized yet. In this study, we analyzed the expression pattern and physiological function of the OsAMT1.1 gene of the AMT1 subfamily in rice. OsAMT1.1 is located in the plasma membrane and is mainly expressed in the root epidermis, stele and mesophyll cells. Disruption of the OsAMTI.1 gene decreased the uptake of NH4^+, and the growth of roots and shoots under both low NH4^+ and high NH4^+ conditions. OsAMT1.1 contributed to the short-term (5 min) ^15NH4^+ influx rate by approximately one-quarter, irrespective of the NH4^+ concentration. Knockout of OsAMTI.I significantly decreased the total N transport from roots to shoots under low NH4^+ conditions. Moreover, compared with the wild type, the osamt1.1 mutant showed an increase in the potassium (K) absorption rate under high NH4^+ conditions and a decrease under low NH4^+ conditions. The mutants contained a significantly high concentration of K in both the roots and shoots at a limited K (0.1 mmol/L) supply when NH4^+ was replete. Taken together, the results indicated that OsAMT1.1 significantly contributes to the NH4^+ uptake under both low and high NH4^+ conditions and plays an important role in N-K homeostasis in rice. 展开更多
关键词 ammonium ammonium transporter INTERACTION POTASSIUM RICE
原文传递
A Critical Role of AMT2;1 in Root-To-Shoot Translocation of Ammonium in Arabidopsis 被引量:13
4
作者 Ricardo F.H. Giehl Alberto M. Laginha +3 位作者 Fengying Duan Doris Rentsch Lixing Yuan Nicolaus von Wirén 《Molecular Plant》 SCIE CAS CSCD 2017年第11期1449-1460,共12页
Ammonium uptake in plant roots is mediated by AMT/MEP/Rh-type ammonium transporters. Out of five AMTs being expressed in Arabidopsis roots, four AMT1-type transporters contribute to ammonium uptake, whereas no physiol... Ammonium uptake in plant roots is mediated by AMT/MEP/Rh-type ammonium transporters. Out of five AMTs being expressed in Arabidopsis roots, four AMT1-type transporters contribute to ammonium uptake, whereas no physiological function has so far been assigned to the only homolog belonging to the MEP subfamily, AMT2;1. Based on the observation that under ammonium supply, the transcript levels of AMT2;1 increased and its promoter activity shifted preferentially to the pericycle, we assessed the contribution of AMT2;1 to xylem loading. When exposed to ^15N-labeled ammonium, amt2;1 mutant lines translocated less tracer to the shoots and contained less ammonium in the xylem sap. Moreover, in an amtl;1 amtl;2 amtl ;3 amt2;1 quadruple mutant (qko), co-expression of AMT2;1 with either AMT1;2 or AMT1;3 significantly enhanced ^15N translocation to shoots, indicating a cooperative action between AMT2;1 and AMT1 transporters. Under N deficiency, proAMT2;1-GFP lines showed enhanced promoter activity predominantly in cortical root cells, which coincided with elevated ammonium influx conferred by AMT2;1 at millimolar sub- strate concentrations. Our results indicate that in addition to contributing moderately to root uptake in the low-affinity range, AMT2;1 functions mainly in root-to-shoot translocation of ammonium, depending on its Cell-type-specific expression in response to the plant nutritional status and to local ammonium gradients. 展开更多
关键词 nitrogen uptake nitrogen translocation ammonium assimilation xylem loading ammonia transport ammonium influx
原文传递
Migration of ammonium nitrogen in ion-absorbed rare earth soils during and post in situ mining: a column study and numerical simulation analysis 被引量:2
5
作者 Gaosheng Xi Xiaojiang Gao +6 位作者 Ming Zhou Xiangmei Zhai Ming Chen Xingxiang Wang Xiaoying Yang Zezhen Pan Zimeng Wang 《Frontiers of Environmental Science & Engineering》 SCIE EI CSCD 2023年第8期137-151,共15页
Ion-absorbed rare earth mines,leached in situ,retain a large amount of ammonium nitrogen(NH4–N)that continuously releases into the surrounding environments.However,quantitative descriptions and predictions of the tra... Ion-absorbed rare earth mines,leached in situ,retain a large amount of ammonium nitrogen(NH4–N)that continuously releases into the surrounding environments.However,quantitative descriptions and predictions of the transport of NH4–N across mining area with hill slopes are not fully established.Here,laboratory column experiments were designed with an inclined slope(a sand box)to examine the spatial temporal transport of NH4–N in soils collected from the ionic rare earth elements(REE)mining area.An HYDRUS-2D model simulation of the experimental data over time showed that soils had a strong adsorption capacity toward NH4–N.Chemical non-equilibrium model(CNEM)could well simulate the transport of NH4–N through the soil-packed columns.The simulation of the transport-adsorption processes at three flow rates of leaching agents revealed that low flow rate enabled a longer residence time and an increased NH4-N adsorption,but reduced the extraction efficiency for REE.During the subsequent rainwater washing process,the presence of slope resulted in the leaching of NH4–N on the surface of the slope,while the leaching of NH4–N deep inside the column was inhibited.Furthermore,the high-intensity rainfall significantly increased the leaching,highlighting the importance of considering the impact of extreme weather conditions during the leaching process.Overall,our study advances the understanding of the transport of NH4–N in mining area with hills,the impact of flow rates of leaching agents and precipitation intensities,and presents as a feasible modeling method to evaluate the environmental risks of NH4–N pollution during and post REE in situ mining activities. 展开更多
关键词 Ion-absorbed rare earth ammonium nitrogen transport HYDRUS-2D Numerical simulation
原文传递
Unimolecular artificial transmembrane channel with terminal dihydrogen phosphate groups showing transport selectivity for ammonium
6
作者 Jian-Yu Chen Qi Xiao +1 位作者 Harekrushna Behera Jun-Li Hou 《Chinese Chemical Letters》 SCIE CAS CSCD 2020年第1期77-80,共4页
A new artificial transmembrane channel molecule bearing dihydrogen phosphate groups has been synthesized.The terminal dihydrogen phosphate groups enable the channel to be highly negatively charged at both ends of the ... A new artificial transmembrane channel molecule bearing dihydrogen phosphate groups has been synthesized.The terminal dihydrogen phosphate groups enable the channel to be highly negatively charged at both ends of the channel structures.The artificial channel could incorporate into the lipid bilayer efficiently under low concentration.The channel displays high NH4+/K+selectivity due to the electrostatic interaction and hydrogen bonding between NH4+and the terminal dihydrogen phosphate groups. 展开更多
关键词 Artificial transmembrane channel ammonium transport Dihydrogen phosphate arene Transmembrane transport Transport selectivity
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部