The influence of micro-structure on magnetic properties of amorphous powder core was investigated.The results show that the amorphous powders of the powder core become crystallized with the increase of annealing tempe...The influence of micro-structure on magnetic properties of amorphous powder core was investigated.The results show that the amorphous powders of the powder core become crystallized with the increase of annealing temperature,and the permeability decreases from 60 to 12,the core loss increases from 0.2 to 0.3 W·cm^(-3),DC-bias characteristic was improved with further increase of annealing temperature,and the magnetic properties become deteriorated due to decrease of permeability and enhancement of coercive force resulting from the crystallization of amorphous powder.展开更多
The FeSiBC amorphous powder cores were fabricated using powders of the FeSiBC amorphous ribbons which were mechanically crushed for a short time, and the relationship between magnetic properties and powder particle si...The FeSiBC amorphous powder cores were fabricated using powders of the FeSiBC amorphous ribbons which were mechanically crushed for a short time, and the relationship between magnetic properties and powder particle sizes was evaluated. The saturation magnetization Bs of the amorphous Fe82Si2B15C1 alloy was 1.62 T, which provided a superior dc-bias property for the powder cores. Meanwhile, a stable permeability up to high frequency range over 10 MHz and the low core loss of 400 kW/ma at f=50 kHz and Bm =0.1 T were obtained. These excellent high-frequency magnetic properties of the FeSiBC amorphous powder cores could be attributed to the effective electrical insulation between the FeSiBC amorphous powders made by mechanical crushing.展开更多
基金This work was financially supported by Beijing Municipal Science and Technology Program(No.D0405003040121).
文摘The influence of micro-structure on magnetic properties of amorphous powder core was investigated.The results show that the amorphous powders of the powder core become crystallized with the increase of annealing temperature,and the permeability decreases from 60 to 12,the core loss increases from 0.2 to 0.3 W·cm^(-3),DC-bias characteristic was improved with further increase of annealing temperature,and the magnetic properties become deteriorated due to decrease of permeability and enhancement of coercive force resulting from the crystallization of amorphous powder.
基金Item Sponsored by National Natural Science Foundation of China(51071050)
文摘The FeSiBC amorphous powder cores were fabricated using powders of the FeSiBC amorphous ribbons which were mechanically crushed for a short time, and the relationship between magnetic properties and powder particle sizes was evaluated. The saturation magnetization Bs of the amorphous Fe82Si2B15C1 alloy was 1.62 T, which provided a superior dc-bias property for the powder cores. Meanwhile, a stable permeability up to high frequency range over 10 MHz and the low core loss of 400 kW/ma at f=50 kHz and Bm =0.1 T were obtained. These excellent high-frequency magnetic properties of the FeSiBC amorphous powder cores could be attributed to the effective electrical insulation between the FeSiBC amorphous powders made by mechanical crushing.