Converting customer needs into specific forms and providing consumers with services are crucial in product design.Currently,conversion is no longer difficult due to the development of modern technology,and various mea...Converting customer needs into specific forms and providing consumers with services are crucial in product design.Currently,conversion is no longer difficult due to the development of modern technology,and various measures can be applied for product realization,thus increasing the complexity of analysis and evaluation in the design process.The focus of the design process has thus shifted from problem solving to minimizing the total amount of information content.This paper presents a New Hybrid Axiomatic Design(AD)Methodology based on iteratively matching and merging design parameters that meet the independence axiom and attribute constraints by applying trimming technology,the ideal final results,and technology evolution theory.The proposed method minimizes the total amount of information content and improves the design quality.Finally,a case study of a rehabilitation robot design for hemiplegic patients is presented.The results indicate that the iterative matching and merging of related attributes can minimize the total amount of information content,reduce the cost,and improve design efficiency.Additionally,evolutionary technology prediction can ensure product novelty and improve market competitiveness.The methodology provides an excellent way to design a new(or improved)product.展开更多
This article deals with the problem of calculating the comparative uncertainty of the main variable in the model of the studied physical phenomenon, which depends on a qualitative and quantitative set of variables. Th...This article deals with the problem of calculating the comparative uncertainty of the main variable in the model of the studied physical phenomenon, which depends on a qualitative and quantitative set of variables. The choice of variables is determined by preliminary information available to the observer and dependent on his knowledge, experience and intuition. The finite value of the amount of information available to the researcher leads to the inevitable aberration of the observed object. This causes the existence of an unremovable and intractable processing by any statistical methods, a comparative (respectively, relative) uncertainty of the model. The goal is to present a theoretical justification for the existence of this uncertainty and proposes a procedure for its calculation. The practical application of the informational method for choosing the preferred model for the Einstein formula and for calculating the speed of sound is demonstrated.展开更多
The escalating costs of research and development, coupled with the influx of researchers, have led to a surge in published articles across scientific disciplines. However, concerns have arisen regarding the accuracy, ...The escalating costs of research and development, coupled with the influx of researchers, have led to a surge in published articles across scientific disciplines. However, concerns have arisen regarding the accuracy, validity, and reproducibility of reported findings. Issues such as replication problems, fraudulent practices, and a lack of expertise in measurement theory and uncertainty analysis have raised doubts about the reliability and credibility of scientific research. Rigorous assessment practices in certain fields highlight the importance of identifying potential errors and understanding the relationship between technical parameters and research outcomes. To address these concerns, a universally applicable criterion called comparative certainty is urgently needed. This criterion, grounded in an analysis of the modeling process and information transmission, accumulation, and transformation in both theoretical and applied research, aims to evaluate the acceptable deviation between a model and the observed phenomenon. It provides a theoretically grounded framework applicable to all scientific disciplines adhering to the International System of Units (SI). Objective evaluations based on this criterion can enhance the reproducibility and reliability of scientific investigations, instilling greater confidence in published findings. Establishing this criterion would be a significant stride towards ensuring the robustness and credibility of scientific research across disciplines.展开更多
基金Supported by Research Startup Fund Project of Fujian University of Technology(Grant No.GY-Z20089)Science Foundation for Young Scholars of Fujian Province of China(Grant No.2018J05099)Education and Scientific Research Projects of Young Teachers in Fujian Province of China(Grant No.JAT160313).
文摘Converting customer needs into specific forms and providing consumers with services are crucial in product design.Currently,conversion is no longer difficult due to the development of modern technology,and various measures can be applied for product realization,thus increasing the complexity of analysis and evaluation in the design process.The focus of the design process has thus shifted from problem solving to minimizing the total amount of information content.This paper presents a New Hybrid Axiomatic Design(AD)Methodology based on iteratively matching and merging design parameters that meet the independence axiom and attribute constraints by applying trimming technology,the ideal final results,and technology evolution theory.The proposed method minimizes the total amount of information content and improves the design quality.Finally,a case study of a rehabilitation robot design for hemiplegic patients is presented.The results indicate that the iterative matching and merging of related attributes can minimize the total amount of information content,reduce the cost,and improve design efficiency.Additionally,evolutionary technology prediction can ensure product novelty and improve market competitiveness.The methodology provides an excellent way to design a new(or improved)product.
文摘This article deals with the problem of calculating the comparative uncertainty of the main variable in the model of the studied physical phenomenon, which depends on a qualitative and quantitative set of variables. The choice of variables is determined by preliminary information available to the observer and dependent on his knowledge, experience and intuition. The finite value of the amount of information available to the researcher leads to the inevitable aberration of the observed object. This causes the existence of an unremovable and intractable processing by any statistical methods, a comparative (respectively, relative) uncertainty of the model. The goal is to present a theoretical justification for the existence of this uncertainty and proposes a procedure for its calculation. The practical application of the informational method for choosing the preferred model for the Einstein formula and for calculating the speed of sound is demonstrated.
文摘The escalating costs of research and development, coupled with the influx of researchers, have led to a surge in published articles across scientific disciplines. However, concerns have arisen regarding the accuracy, validity, and reproducibility of reported findings. Issues such as replication problems, fraudulent practices, and a lack of expertise in measurement theory and uncertainty analysis have raised doubts about the reliability and credibility of scientific research. Rigorous assessment practices in certain fields highlight the importance of identifying potential errors and understanding the relationship between technical parameters and research outcomes. To address these concerns, a universally applicable criterion called comparative certainty is urgently needed. This criterion, grounded in an analysis of the modeling process and information transmission, accumulation, and transformation in both theoretical and applied research, aims to evaluate the acceptable deviation between a model and the observed phenomenon. It provides a theoretically grounded framework applicable to all scientific disciplines adhering to the International System of Units (SI). Objective evaluations based on this criterion can enhance the reproducibility and reliability of scientific investigations, instilling greater confidence in published findings. Establishing this criterion would be a significant stride towards ensuring the robustness and credibility of scientific research across disciplines.