期刊文献+
共找到3,295篇文章
< 1 2 165 >
每页显示 20 50 100
Effect of Sweet Corn Straw Returning to the Field on Soil Fertility, Yield and Benefit 被引量:1
1
作者 Peng Wangdong Chu Chengxing +5 位作者 Zhong Yaqing Lai Weihong Zhang Haibin Huang Liuyu Shi Xiaoxiao Wei Jialiang 《Meteorological and Environmental Research》 CAS 2016年第4期59-63,共5页
It is an important way for realizing sustainable development of sweet corn production to stabilize and improve soil fertility of cultivated land in sweet corn production region.Through the test of sweet corn straw dir... It is an important way for realizing sustainable development of sweet corn production to stabilize and improve soil fertility of cultivated land in sweet corn production region.Through the test of sweet corn straw directly returning to the field after 6seasons for 3years,the results showed that continuous single application of chemical fertilizer is not conducive to the stability of soil fertility and yield improvement,and implementation of straw returning could receive fertility,improve soil acidic conditions,and enhance the yield of sweet corn.Compared with before the test,the single application of chemical fertilizer increased soil available phosphorus,while the contents of soil organic matter,available nitrogen and available potassium decreased by 1.08,1.18 and 2.47mg/kg respectively,and the soil pH decreased by 0.15.Under the same fertilizer conditions,organic matter contents of single and double-season straw returning increased by 0.71 and 1.29g/kg,available nitrogen increased by 17.15 and 28.27mg/kg,available phosphorus increased by 0.96 and 1.73mg/kg,available potassium increased by 2.41 and 5.92mg/kg,the soil pH increased by 0.16 and 0.2.Compared with the single application of chemical fertilizer,the average yields of single and double-season straw returning increased by 7.5%and 11.8%,and their average income increased by 87.3and 117.1yuan of per mu(667m^2)respectively. 展开更多
关键词 Sweet corn straw RETURNING to the field Soil fertility YIELD BENEFIT China
下载PDF
Effects of Amount of Green Manure Returned to Field on Yield and Quality of Flue-cured Tobacco 被引量:1
2
作者 Mingfa ZHANG Feng TIAN +2 位作者 Maocheng TIAN Qianfeng CHENG Xiaohua DENG 《Agricultural Biotechnology》 CAS 2018年第5期201-203,共3页
The effects of amount of green manure returned to field on yield and quality of flue-cured tobacco were studied by field experiment. The results showed that significant positive correlation existed between tobacco lea... The effects of amount of green manure returned to field on yield and quality of flue-cured tobacco were studied by field experiment. The results showed that significant positive correlation existed between tobacco leaf yield and small or moderate amount of green manure returned to field. Path analysis showed that moderate amount of green manure returned to field affected yield and quality of tobacco leaves, small green manure returned to field mainly affected leaf yield, while large amount of green manure returned to field mainly affected leaf quality. Therefore, the effect of moderate amount of green manure returned to field on yield and quality of tobacco leaves was best, and moderate amount of green manure returned to field was recommended in production of flue-cured tobacco. 展开更多
关键词 Flue-cured tobacco Returning green manure to field Yield and quality
下载PDF
Straw return increases crop production by improving soil organic carbon sequestration and soil aggregation in a long-term wheat-cotton cropping system
3
作者 Changqin Yang Xiaojing Wang +6 位作者 Jianan Li Guowei Zhang Hongmei Shu Wei Hu Huanyong Han Ruixian Liu Zichun Guo 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第2期669-679,共11页
Straw return is a promising strategy for managing soil organic carbon(SOC)and improving yield stability.However,the optimal straw return strategy for sustainable crop production in the wheat(Triticum aestivum L.)-cott... Straw return is a promising strategy for managing soil organic carbon(SOC)and improving yield stability.However,the optimal straw return strategy for sustainable crop production in the wheat(Triticum aestivum L.)-cotton(Gossypium hirsutum L.)cropping system remains uncertain.The objective of this study was to quantify the long-term(10 years)impact of carbon(C)input on SOC sequestration,soil aggregation and crop yields in a wheat-cotton cropping system in the Yangtze River Valley,China.Five treatments were arranged with a single-factor randomized design as follows:no straw return(Control),return of wheat straw only(Wt),return of cotton straw only(Ct),return of 50%wheat and 50%cotton straw(Wh-Ch)and return of 100%wheat and 100%cotton straw(Wt-Ct).In comparison to the Control,the SOC content increased by 8.4 to 20.2%under straw return.A significant linear positive correlation between SOC sequestration and C input(1.42-7.19 Mg ha^(−1)yr^(−1))(P<0.05)was detected.The percentages of aggregates of sizes>2 and 1-2 mm at the 0-20 cm soil depth were also significantly elevated under straw return,with the greatest increase of the aggregate stability in the Wt-Ct treatment(28.1%).The average wheat yields increased by 12.4-36.0%and cotton yields increased by 29.4-73.7%,and significantly linear positive correlations were also detected between C input and the yields of wheat and cotton.The average sustainable yield index(SYI)reached a maximum value of 0.69 when the C input was 7.08 Mg ha^(−1)yr^(−1),which was close to the maximum value(SYI of 0.69,C input of 7.19 Mg ha^(−1)yr^(-1))in the Wt-Ct treatment.Overall,the return of both wheat and cotton straw was the best strategy for improving SOC sequestration,soil aggregation,yields and their sustainability in the wheat-cotton rotation system. 展开更多
关键词 straw return crop yields SOC soil aggregates wheat-cotton cropping system
下载PDF
The efficiency of long-term straw return to sequester organic carbon in Northeast China's cropland 被引量:19
4
作者 WANG Shi-chao ZHAO Ya-wen +5 位作者 WANG Jin-zhou ZHU Ping CUI Xian HAN Xiao-zeng XU Ming-gang LU Chang-ai 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2018年第2期436-448,共13页
Black soil is one of the most precious soil resources on earth because it has abundant carbon stocks and a relatively high production capacity. However, decreasing organic matter after land reclamation, and the effect... Black soil is one of the most precious soil resources on earth because it has abundant carbon stocks and a relatively high production capacity. However, decreasing organic matter after land reclamation, and the effects of long-term inputs of organic carbon have made it less fertile black soil in Northeast China. Straw return could be an effective method for improving soil organic carbon(SOC) sequestration in black soils. The objective of this study was to evaluate whether straw return effectively increases SOC sequestration. Long-term field experiments were conducted at three sites in Northeast China with varying latitudes and SOC densities. Study plots were subjected to three treatments: no fertilization(CK); inorganic fertilization(NPK); and NPK plus straw return(NPKS). The results showed that the SOC stocks resulting from NPKS treatment were 4.0 and 5.7% higher than those from NPK treatment at two sites, but straw return did not significantly affect the SOC stocks at the third site. Furthermore, at higher SOC densities, the NPKS treatment resulted in significantly higher soil carbon sequestration rates(CSR) than the NPK treatment. The equilibrium value of the CSR for the NPKS treatment equated to cultivation times of 17, 11, and 8 years at the different sites. Straw return did not significantly increase the SOC stocks in regions with low SOC densities, but did enhance the C pool in regions with high SOC densities. These results show that there is strong regional variation in the effects of straw return on the SOC stocks in black soil in Northeast China. Additional cultivations and fertilization practices should be used when straw return is considered as an approach for the long-term improvement of the soil organic carbon pool. 展开更多
关键词 soil organic carbon(SOC) SOC stock straw return soil sequestration rate straw-C sequestration efficiency black soil long-term experiments
下载PDF
Effects of Method for Returning Straw to Field on Soil Properties,Straw Decomposition and Nutrient Release 被引量:1
5
作者 Xiang LI Qiao ZENG +2 位作者 Shanchao CAO Yueli MA Yangli ZHANG 《Asian Agricultural Research》 2022年第5期51-56,共6页
[Objectives]To alleviate the influence of meteorological conditions on soil environment(temperature and water content)and maintain high and stable grain yield.[Methods]Taking Sunzhen Experimental Station of Weinan Aca... [Objectives]To alleviate the influence of meteorological conditions on soil environment(temperature and water content)and maintain high and stable grain yield.[Methods]Taking Sunzhen Experimental Station of Weinan Academy of Agricultural Sciences as the experimental base,the effects of returning double-crop wheat and corn straw to field(Twm),returning single-crop corn straw to field(Tm),returning single-crop wheat straw to field(Tw)on soil temperature,water content,straw decomposition rate and nutrient release,soil organic matter and bulk density were studied systematically.[Results]Twm treatment could effectively alleviate the effects of meteorological conditions on soil temperature and water content.The decomposition rate of straw treated with Twm was 4.7%higher than that of Tm treatment,3.8%higher than that of Tw treatment,10.5%higher than that of Tm treatment,and the decomposition rate of straw showed a trend of"first fast,then slow and then fast".The release of nitrogen from straw was basically similar to that of straw decay,and the release of potassium and phosphorus increased at first and then remained basically unchanged.The release rate of potassium was the highest,followed by phosphorus and nitrogen.The content of soil organic matter in Twm treatment increased by 11.67%annually,an annual average of 0.998 g/kg.The soil bulk density of Twm treatment decreased by 0.058 g/cm^(3) annually,an annual average of 4.29%.The fundamental reason is that Twm treatment provides conditions(temperature,water content,nutrition)for microbial growth,reproduction,enzyme production and biochemical reaction,and increases the exchange capacity of soil and external water,heat,gas and fertilizer.[Conclusions]It is expected is to help people change their understanding of returning straw to field from"quick harvest"to"fertilizer transformation". 展开更多
关键词 Method for returning straw to field straw decomposition Soil organic matter content Soil bulk density
下载PDF
Effects of Straw Returning and Chemical Control on Occurrence Quantity of Athetis lepigone Moschler in Summer Maize Fields
6
作者 Lili LI Nan ZHAO +7 位作者 Jie SHI Ansheng ZHANG Xingyuan MEN Xianhong ZHOU Qianying ZHUANG Sicong ZHANG Zhenying WANG Yi YU 《Plant Diseases and Pests》 CAS 2012年第3期30-31,共2页
Athetis lepigone Moschler is a new kind of insect pest occurring in summer corn production areas. By investigation, it was found especially serious in straw returning fields. In this paper, its damage status was inves... Athetis lepigone Moschler is a new kind of insect pest occurring in summer corn production areas. By investigation, it was found especially serious in straw returning fields. In this paper, its damage status was investigated in straw returning and chemical controlled fields, respectively. The results showed that the rate of damaged plants was 82% and the maximum pest number per 100 plants was 88 heads in the straw returning fields without chemical control. The application of herbicides and pesticides had no significant effects on occurrence quantity and damage rate, but the pest number per 100 plants decreased a little compared to the fields without chemical control. In the surer er maize fields without straw returning, the application of herbicides and pesticides could significantly decrease the damage of Athetis lepigone, the rate of damaged plants was 20%, and the pest number per 100 plants was 6. 展开更多
关键词 Summer maize straw returning Athet/s lepigone Moschler Chemical control
下载PDF
Design of New Farm Machine for Chopping Field Straw,Pressing it into Soil and Cleaning up Plastic Film
7
作者 Jiqiang CUI Lele HE 《Asian Agricultural Research》 2017年第3期110-111,共2页
In this paper,we design a farm machine integrating the functions of chopping field straw,pressing field straw into soil,breaking stubble,and cleaning up plastic film,in order to improve the efficiency of plastic film ... In this paper,we design a farm machine integrating the functions of chopping field straw,pressing field straw into soil,breaking stubble,and cleaning up plastic film,in order to improve the efficiency of plastic film cleaning,enrich the function of straw chopping equipment,reduce the noise generated at work,and further realize the intelligent harmony. The remote control button is used to control the work of the entire system,and the bluetooth remote control module and matrix keyboard are used to control the vehicle. With STM32 microcontroller as the main control chip,the machine controls the motion of the electric motor by relay,and employs LCD screen to realize real-time display of system work. It is convenient and easy to operate,with good human-computer interaction. 展开更多
关键词 field straw chopping Pressing straw into soil Plastic film clean-up MICROCONTROLLER
下载PDF
基于Theil不等系数IOWAO组合模型的黑龙江省秸秆还田机械化程度预测
8
作者 乔金友 闫思梦 +2 位作者 孙健 荆玉冰 陈海涛 《中国农机化学报》 北大核心 2024年第4期258-265,共8页
玉米、水稻等作物收后秸秆处理一直是农业生产中亟待解决的问题,机械化秸秆还田是作物收后秸秆处理的重要手段,也是保护黑土资源的重要措施。结合相关文献,提出基于协整性检验的单一预测模型选择和基于误差指标最小的最优组合预测模型... 玉米、水稻等作物收后秸秆处理一直是农业生产中亟待解决的问题,机械化秸秆还田是作物收后秸秆处理的重要手段,也是保护黑土资源的重要措施。结合相关文献,提出基于协整性检验的单一预测模型选择和基于误差指标最小的最优组合预测模型选择关键环节;运用协整性检验方法确定二次函数模型、ARIMA模型、H-W无季节模型作为秸秆还田机械化程度预测的单一模型;依据误差绝对值和最小法、Shapley法和基于Theil不等系数IOWAO法构建三种组合预测模型,采用误差平方和(SSE)、平均绝对误差(MAE)、均方误差(MSE)、平均绝对百分比误差(MAPE)、均方百分比误差(MSPE)五个误差指标比较模型精度,确定采用基于Theil不等系数IOWAO的组合模型为最优预测作物秸秆还田机械化程度模型。结果表明,2022-2026年黑龙江省秸秆还田机械化程度将稳步提升,平均每年增加4.52%,2026年将达到74.19%,比2021年提升22.62%;2022年以后,黑龙江省秸秆还田机械化程度将进入快速发展期。为制定和实施机械化秸秆处理政策提供理论依据,为保护和恢复黑土资源生产能力提供重要支撑。 展开更多
关键词 黑龙江省 秸秆还田机械化 黑土资源保护 变权重组合预测
下载PDF
Effects of the combined application of organic and chemical nitrogen fertilizer on soil aggregate carbon and nitrogen:A 30-year study 被引量:1
9
作者 BAI Jin-shun ZHANG Shui-qing +5 位作者 HUANG Shao-min XU Xin-peng ZHAO Shi-cheng QIU Shao-jun HE Ping ZHOU Wei 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2023年第11期3517-3534,共18页
To understand the long-term effects of combined organic and chemical nitrogen fertilization on soil organic C(SOC) and total N(TN), we conducted a 30-year field experiment with a wheat–maize rotation system on the Hu... To understand the long-term effects of combined organic and chemical nitrogen fertilization on soil organic C(SOC) and total N(TN), we conducted a 30-year field experiment with a wheat–maize rotation system on the Huang-HuaiHai Plain during 1990–2019. The experimental treatments consisted of five fertilizer regimes: no fertilizer(control), chemical fertilizer only(NPK), chemical fertilizer with straw(NPKS), chemical fertilizer with manure(NPKM), and 1.5 times the rate of NPKM(1.5NPKM). The NPK, NPKS, and NPKM treatments had equal N inputs. The crop yields were measured over the whole experimental duration. Soil samples were collected from the topsoil(0–10 and 10–20 cm) and subsoil(20–40 cm) layers for assessing soil aggregates and taking SOC and TN measurements. Compared with the NPK treatment, the SOC and TN contents increased significantly in both the topsoil(24.1–44.4% for SOC and 22.8–47.7% for TN) and subsoil layers(22.0–47.9% for SOC and 19.8–41.8% for TN) for the organically amended treatments(NPKS, NPKM and 1.5NPKM) after 30 years, while no significant differences were found for the average annual crop yields over the 30 years of the experiment. The 0–10 cm layer of the NPKS treatment and the 20–40 cm layer of the NPKM treatment had significantly higher macroaggregate fraction mass proportions(19.8 and 27.0%) than the NPK treatment. However, the 0–10 and 20–40 cm layers of the 1.5NPKM treatment had significantly lower macroaggregate fraction mass proportions(–19.2 and –29.1%) than the control. The analysis showed that the higher SOC and TN in the soil of organically amended treatments compared to the NPK treatment were related to the increases in SOC and TN protected in the stable fractions(i.e., free microaggregates and microaggregates within macroaggregates), in which the contributions of the stable fractions were 81.1–91.7% of the increase in SOC and 83.3–94.0% of the increase in TN, respectively. The relationships between average C inputs and both stable SOC and TN stocks were significantly positive with R2 values of 0.74 and 0.72(P<0.01) for the whole 40 cm soil profile, which indicates the importance of N for soil C storage. The results of our study provide key evidence that long-term combined organic and chemical nitrogen fertilization, while maintaining reasonable total N inputs, benefited soil C and N storage in both the topsoil and subsoil layers. 展开更多
关键词 soil aggregate fractions soil organic matter manure application straw return C:N ratio
下载PDF
Field Application of Mulberry Straw Arch in Ecological Bank Revetment 被引量:1
10
作者 Xiaojuan Yu Chao Liu +2 位作者 Quan Hua Xiaohui Wang Yongbin Li 《Journal of Renewable Materials》 SCIE EI 2022年第10期2607-2621,共15页
With the growing level of awareness and increasing demand for environmental protection,timber pile revetments with significant ecological effects have experienced increasingly wide application in China.The current tim... With the growing level of awareness and increasing demand for environmental protection,timber pile revetments with significant ecological effects have experienced increasingly wide application in China.The current timber pile revetment system has two problems:continuous dense piles have high construction costs and require large timber consumptions,while the discrete pile-bamboo fence systems have poor retaining effects.Considering these problems,an original revetment structure form is proposed:a discrete pile-mulberry straw arch structure.To investigate the mechanical properties of the mulberry straw,some mechanical tests are conducted on mulberry straw and its arch structure.It is found that the average compressive strength of mulberry straw is 2.30 MPa,the bending strength is 20.08 MPa and the shear strength is 2.99 MPa;considering the structural characteristics of arches,mulberry straw arches have a high bending strength,which affords immense potential for their application in revetment structures.Furthermore,by doing field study of the discrete timber pile-mulberry straw arch structure for bank revetment,it is found that the arch height of the mulberry straw arch changes 1.4–1.6 cm after 489 d observation.The soil settlement before the straw arch is 0.13–0.18 cm and the settlement of the pile is 0.66–0.72 mm.Compared with bamboo fence structure,the cost of using mulberry straw arch structure as revetment material can save up to 27.07%.Therefore,the discrete timber pile-mulberry straw arch has a rational and stable structure that provides effective support for protecting the riverbank and the toe of gentle slopes and effectively prevents the collapse of bank slopes in the rear.The new revetment structure proposed in this paper has signifi-cant ecological and economic effects,is easy to construct and feasible for standard production,and consequently has great application potential. 展开更多
关键词 Mulberry straw arch ecological bank revetment field test
下载PDF
Energy from Combustion of Rice Straw: Status and Challenges to China 被引量:2
11
作者 Zhiqiang Liu Aixiang Xu Bin Long 《Energy and Power Engineering》 2011年第3期325-331,共7页
As the biggest agricultural country, China has an abundant rice straw energy resource. The characteristics of typical china rice straws are presented as high moisture contents, high volatile contents, high ash content... As the biggest agricultural country, China has an abundant rice straw energy resource. The characteristics of typical china rice straws are presented as high moisture contents, high volatile contents, high ash contents and low bulk density. At present, rice straw is mainly used as fuel, feedstuff, fertilizer and industrial raw material. With improved living conditions in rural areas, farmers tend to rely more on commercial fuel, which leads to even more open field burning of rice straw, and brings air pollutions and potential energy waste as well. The Chinese government is studying relevant policies on acceleration of comprehensive utilization of rice straw with the goal of utilization rate exceeding 80% in 2015. In this paper, focus is on the combustion of rice straw to extract energy, and related challenges face to china is put forward in this paper also. 展开更多
关键词 RICE straws COMBUSTION Pollutions OPEN-field BURNING Grate-Firing
下载PDF
Calculation and analysis of the number of return photons from sodium laser beacon excited by the long pulse laser with circular polarization
12
作者 刘向远 钱仙妹 +1 位作者 李玉杰 饶瑞中 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第12期240-248,共9页
The number of return photons from sodium laser beacon(SLB) greatly suffers down-pumping, recoil, and geomagnetic field when the long pulse laser with circular polarization interacts with sodium atoms in the mesosphe... The number of return photons from sodium laser beacon(SLB) greatly suffers down-pumping, recoil, and geomagnetic field when the long pulse laser with circular polarization interacts with sodium atoms in the mesosphere. Considering recoil and down-pumping effects on the number of return photons from SLB, the spontaneous radiation rates are obtained by numerical computations and fittings. Furthermore, combining with the geomagnetic field effects, a new expression is achieved for calculating the number of return photons. By using this expression and considering the stochastic distribution of laser intensity in the mesosphere under different turbulence models for atmosphere, the number of return photons excited by the narrow-band single mode laser and that by the narrow-band three-mode laser are respectively calculated. The results show that the narrow-band three-mode laser with a specific spectrum structure has a higher spontaneous radiation rate and more return photons than a narrow-band single mode laser. Of note, the effect of the atmospheric turbulence on the number of return photons is remarkable. Calculation results indicate that the number of return photons under the HV5/7 model for atmospheric turbulence is much higher than that under the Greenwood and Mod HV models. 展开更多
关键词 sodium laser beacon spontaneous radiation rates the number of return photons down-pumping recoil geomagnetic field
下载PDF
Effects of Tillage Practices and Straw Management on Physical Properties of Mollisols,Root Architecture and Maize Yield in Northeast China
13
作者 Li Yu-hang Yang Jia-yu +5 位作者 Tang Yu Wang Zi-hua Liu Yu-ze He Wan-Ying Cao Ning Gu Si-yu 《Journal of Northeast Agricultural University(English Edition)》 CAS 2022年第4期24-38,共15页
Tillage practices and organic amendment are strategies used worldwide to preserve the properties and fertility of soils.This study aimed to elucidate effects of 3-year field treatments of tillage practice and straw ma... Tillage practices and organic amendment are strategies used worldwide to preserve the properties and fertility of soils.This study aimed to elucidate effects of 3-year field treatments of tillage practice and straw management on physical properties of Mollisols,root architecture and maize yield in northeast China.The experiment was conducted from 2015 to 2018 following a splitplot design of a randomized complete block with tillage practices[rotary tillage(R)and deep tillage(D)]as main plots and straw managements[straw returning(S),straw returning and organic fertilizer(M),straw removal(T)]as subplots.Soil samples at 0-15,15-30,30-50 cm depths and root samples at the seedling stage were collected.The results showed that DM treatment significantly improved soil moisture content at 10-50 cm soil depth and decreased soil compaction(P<0.05),which led to a better root architecture.Rotary tillage had a slower thermal conductivity but better thermal insulation performance,while deep tillage showed a higher daily temperature difference.Bulk density of topsoil was significantly lower in DS(1.16 g·cm^(-3))than in other treatments,but the soil permeability in DS(1.40 mm·min^(-1)in 0-15 soil depth and 1.45 mm·min-1in 15-30 cm soil depth)was the highest.At the maize seedling stage,DM had the highest root dry weight,root-shoot ratio and root length,while RM had the highest root volume,root furcation number and root tip number.The maize yield of three years in DM was 6.19%,5.21%and 15.72%higher than that in DS,DT and RM(P<0.01),respectively.Relative to RT and DT,a slight decrease(2.72%and 0.93%,respectively)in maize yield under RS and DS was observed,which could be alleviated by the addition of organic fertilizer.The correlation matrix indicated that kernel per ear number and 100-kernel weight were the dominant factors that affected maize yield.Redundancy analysis suggested that straw managements and tillage practices were significantly positively correlated with root-shoot ratio,root dry weight,maximum root length,the total root length and maize yield,but significantly negatively correlated with soil compaction,bulk density,soil moisture content and soil temperature.Among all the treatments,deep tillage with straw returning and the addition of organic fertilizer was recommended as a promising strategy in restoring soil productivity,promoting maize growth and increasing maize yield in Mollisols of northeast China and similar regions around the world. 展开更多
关键词 TILLAGE straw returning organic fertilizer soil temperature soil moisture soil compaction redundancy analysis
下载PDF
Straw return and appropriate tillage method improve grain yield and nitrogen efficiency of winter wheat 被引量:47
14
作者 CHEN Jin ZHENG Meng-jing +7 位作者 PANG Dang-wei YIN Yan-ping HAN Ming-ming LI Yan-xia LUO Yong-li XU Xu LI Yong WANG Zhen-lin 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2017年第8期1708-1719,共12页
Straw return is an important management tool for tackling and promoting soil nutrient conservation and improving crop yield in Huang-Huai-Hai Plain, China. Although the incorporation of maize straw with deep plowing a... Straw return is an important management tool for tackling and promoting soil nutrient conservation and improving crop yield in Huang-Huai-Hai Plain, China. Although the incorporation of maize straw with deep plowing and rotary tillage practices are widespread in the region, only few studies have focused on rotation tillage. To determine the effects of maize straw return on the nitrogen (N) efficiency and grain yield of winter wheat (Triticum aestivum L.), we conducted experiments in this region for 3 years. Five treatments were tested: (i) rotary tillage without straw return (RT); (ii) deep plowing tillage without straw return (DT); (iii) rotary tillage with total straw return (RS); (iv) deep plowing tillage with total straw return (DS); (v) rotary tillage of 2 years and deep plowing tillage in the 3rd year with total straw return (TS). Treatments with straw return increased kernels no. ear-1, thousand-kernel weight (TKW), grain yields, ratio of dry matter accumulation post-anthesis, and nitrogen (N) efficiency whereas reduced the ears no. ha-1 in the 2011-2012 and 2012-2013 growing seasons. Compared with the rotary tillage, deep plowing tillage significantly increased the grain yield, yield components, total dry matter accumulation, and N efficiency in 2013-2014. RS had significantly higher straw N distribution, soil inorganic nitrogen content, and soil enzymes activities in the 0-10 cm soil layer compared with the DS and TS. However, significantly lower values were ob- served in the 10-20 and 20-30 cm soil layers. TS obtained approximately equal grain yield as DS, and it also reduced the resource costs. Therefore, we conclude that TS is the most economical method for increasing grain yield and N efficiency of winter wheat in Huang-Huai-Hai Plain. 展开更多
关键词 grain yield N efficiency straw return tillage method winter wheat
下载PDF
Effects of straw and biochar addition on soil nitrogen,carbon,and super rice yield in cold waterlogged paddy soils of North China 被引量:23
15
作者 CUI Yue-feng MENG Jun +3 位作者 WANG Qing-xiang ZHANG Wei-ming CHENG Xiao-yi CHEN Wen-fu 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2017年第5期1064-1074,共11页
The additions of straw and biochar have been suggested to increase soil fertility, carbon sequestration, and crop produc- tivity of agricultural lands. To our knowledge, there is little information on the effects of s... The additions of straw and biochar have been suggested to increase soil fertility, carbon sequestration, and crop produc- tivity of agricultural lands. To our knowledge, there is little information on the effects of straw and biochar addition on soil nitrogen form, carbon storage, and super rice yield in cold waterlogged paddy soils. We performed field trials with four treatments including conventional fertilization system (CK), straw amendment 6 t ha^-1 (S), biochar amendment 2 t ha^-1 (C1), and biochar amendment 40 t ha^-1 (C2). The super japonica rice variety, Shennong 265, was selected as the test Crop. The results showed that the straw and biochar amendments improved total nitrogen and organic carbon content of the soil, reduced N2O emissions, and had little influence on nitrogen retention, nitrogen density, and CO2 emissions. The S and C1 increased NH4^+-N content, and C2 increased NO3^--N content. Both S and C1 had little influence on soil organic carbon density (SOCD) and C/N ratio. However, C2 greatly increased SOCD and C/N ratio. C1 and C2 significantly improved the soil carbon sequestration (SCS) by 62.9 and 214.0% (P〈0.05), respectively, while S had no influence on SCS. C1 and C2 maintained the stability of super rice yield, and significantly reduced CH4 emissions, global warming potential (GWP), and greenhouse gas intensity (GHGI), whereas S had the opposite and negative effects. In summary, the biochar amendments in cold waterlogged paddy soils of North China increased soil nitrogen and carbon content, improved soil carbon sequestration, and reduced GHG emission without affecting the yield of super rice. 展开更多
关键词 BIOCHAR straw paddy field nitrogen form carbon sequestration greenhouse gas emission rice yield
下载PDF
Effects of long-term straw return on soil organic carbon fractions and enzyme activities in a double-cropped rice paddy in South China 被引量:20
16
作者 HUANG Wan WU Jian-fu +5 位作者 PAN Xiao-hua TAN Xue-ming ZENG Yong-jun SHI Qing-hua LIU Tao-ju ZENG Yan-hua 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2021年第1期236-247,共12页
Long-term straw return is an important carbon source for improving soil organic carbon(SOC) stocks in croplands, and straw removal through burning is also a common practice in open fields in South China. However, the ... Long-term straw return is an important carbon source for improving soil organic carbon(SOC) stocks in croplands, and straw removal through burning is also a common practice in open fields in South China. However, the specific effects of long-term rice straw management on SOC fractions, the related enzyme activities and their relationships, and whether these effects differ between crop growing seasons remain unknown. Three treatments with equal nitrogen, phosphorus, and potassium nutrient inputs, including straw/ash and chemical nutrients, were established to compare the effects of straw removal(CK), straw return(SR), and straw burned return(SBR). Compared to CK, long-term SR tended to improve the yield of early season rice(P=0.057), and significantly increased total organic carbon(TOC) and microbial biomass carbon(MBC) in double-cropped rice paddies. While SBR had no effect on TOC, it decreased light fraction organic carbon(LFOC) in early rice and easily oxidizable organic carbon(EOC) in late rice, significantly increased dissolved organic carbon(DOC), and significantly decreased soil p H. These results showed that MBC was the most sensitive indicator for assessing changes of SOC in the double-cropped rice system due to long-term straw return. In addition, the different effects on SOC fraction sizes between SR and SBR were attributed to the divergent trends in most of the soil enzyme activities in the early and late rice that mainly altered DOC, while DOC was positively affected by β-xylosidase in both early and late rice. We concluded that straw return was superior to straw burned return for improving SOC fractions, but the negative effects on soil enzyme activities in late rice require further research. 展开更多
关键词 double-cropped rice paddy system straw return straw burned return SOC fractions soil enzyme activities
下载PDF
Effects of Combination of Straw Returning and a Microbial Agent on Microorganisms and Enzyme Activity in Rhizosphere Soil and Yield of Late Rice 被引量:6
17
作者 Ni Guorong Tu Guoquan +4 位作者 Wei Saijin Wu Jianfu Shi Qinghua Zhou Chunhuo Pan Xiaohua 《Meteorological and Environmental Research》 CAS 2017年第6期78-82,共5页
By using red soil and late rice Wufengyou T025 as the tested materials,the influences of straw returning with a microbial agent on the quantity of microorganisms and enzyme activity in rhizosphere soil in fields were ... By using red soil and late rice Wufengyou T025 as the tested materials,the influences of straw returning with a microbial agent on the quantity of microorganisms and enzyme activity in rhizosphere soil in fields were studied,and soil productivity was tested with yield and agricultural traits of late rice. The results showed that straw returning with the microbial agent could significantly improve the quantity of bacteria,fungi and actinomyces in soil,enhance the activity of sucrase,urease,catalase and cellulase,and improve the number of grains per spike,setting percentage,thousand seed weight and yield of late rice. The combination of rice straw returning and the microbial agent has a good prospect of application. 展开更多
关键词 MICROBIAL agents straw RETURNING Quantity of MICROORGANISMS Soil ENZYMES YIELD
下载PDF
Effects of long-term full straw return on yield and potassium response in wheat-maize rotation 被引量:36
18
作者 BAI You-lu WANG Lei +4 位作者 LU Yan-li YANG Li-ping ZHOU Li-ping NI Lu CHENG Ming-fang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2015年第12期2467-2476,共10页
The effect of long-term straw return on crop yield, soil potassium(K) content, soil organic matter, and crop response to K from both straw and chemical K fertilizer(K_2SO_4) were investigated in a fixed site field... The effect of long-term straw return on crop yield, soil potassium(K) content, soil organic matter, and crop response to K from both straw and chemical K fertilizer(K_2SO_4) were investigated in a fixed site field experiment for winter wheat-summer maize rotation in 6 years for 12 seasons. The field experiment was located in northern part of North China Plain with a sandy soil in relatively low yield potential. Two factors, straw return and chemical K fertilizer, were studied with two levels in each factor. Field split design was employed, with two straw treatments, full straw return of previous crop(St) and no straw return, in main plots, and two chemical K fertilizer treatments, 0 and 60 kg K2 O ha^(–1), as sub-plots. The results showed that straw return significantly increased yields of winter wheat and summer maize by 16.5 and 13.2% in average, respectively, and the positive effect of straw return to crop yield showed more effective in lower yield season. Straw return significantly increased K absorption by the crops, with significant increase in straw part. In treatment with straw return, the K content in crop straw increased by 15.9 and 21.8% in wheat and maize, respectively, compared with no straw return treatment. But, straw return had little effect on K content in grain of the crops. Straw return had significant influences on total K uptake by wheat and maize plants, with an increase of 32.7 and 30.9%, respectively. There was a significant correlation between crop yield and K uptake by the plant. To produce 100 kg grain, the wheat and maize plants absorbed 3.26 and 2.24 kg K2 O, respectively. The contents of soil available K and soil organic matter were significantly affected by the straw return with an increase of 6.07 and 23.0%, respectively, compared to no straw return treatment. K_2SO_4 application in rate of 60 kg K2 O ha^(–1) showed no significant effect on wheat and maize yield, K content in crop straw, total K uptake by the crops, soil available K content, and soil organic matter. The apparent K utilization rate(percentage of applied K absorbed by the crop in the season) showed difference for wheat and maize with different K sources. In wheat season, the K utilization rate from K_2SO_4 was higher than that from straw, while in maize season, the K utilization rate from straw was higher than that from chemical fertilizer. In the whole wheat-maize rotation system, the K absorption efficiency by the two crops from straw was higher than that from K_2SO_4. 展开更多
关键词 straw return potassium in straw wheat maize potassium response
下载PDF
Improved soil characteristics in the deeper plough layer can increase grain yield of winter wheat 被引量:3
19
作者 CHEN Jin PANG Dang-wei +4 位作者 JIN Min LUO Yong-li LI Hao-yu LI Yong WANG Zhen-lin 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2020年第5期1215-1226,共12页
In the North China Plain(NCP), soil deterioration threatens winter wheat(Triticum aestivum L.) production. Although rotary tillage or plowing tillage are two methods commonly used in this region, research characterizi... In the North China Plain(NCP), soil deterioration threatens winter wheat(Triticum aestivum L.) production. Although rotary tillage or plowing tillage are two methods commonly used in this region, research characterizing the effects of mixed tillage on soil characteristics and wheat yield has been limited. A fixed-site field trial was carried out during 2011–2016 to examine the impacts of three tillage practices(5-year rotary tillage with maize straw removal(RT);5-year rotary tillage with maize straw return(RS);and annual RS and with a deep plowing interval of 2 years(RS/DS)) on soil characteristics and root distribution in the plough layer. Straw return significantly decreased soil bulk density, increased soil organic carbon(SOC) storage and SOC content, macro-aggregate proportion(R_(0.25)) and its stability in the plough layer. The RS/DS treatment significantly increased the SOC content, total nitrogen(TN), and root length density(RLD) in the 10–40 cm layer, and enhanced the proportion of RLD in the 20–30 and 30–40 cm layers. In the 20–30 and 30–40 cm layers, an increase in SOC and TN could lead to higher grain production than commensurate increases in the surface layer, resulting in a sustainable increase in grain yield from the RS/DS treatment. Thus, the RS/DS treatment could lead to high productivity of winter wheat by improving soil characteristics and root distribution at the deeper plough layer in the NCP. 展开更多
关键词 soil CHARACTERISTICS root length density TILLAGE practice straw RETURN winter wheat
下载PDF
Effect of Long-Term Rice Straw Return on Soil Glomalin, Carbon and Nitrogen 被引量:49
20
作者 NIE Jun ZHOU Jian-Min +2 位作者 WANG Huo-Yan CHEN Xiao-Qin DU Chang-Wen 《Pedosphere》 SCIE CAS CSCD 2007年第3期295-302,共8页
A long-term experiment was conducted to investigate how long-term fertilization and rice straw incorporation into soil affect soil glomalin, C and N. The combined application of chemical fertilizer and straw resulted ... A long-term experiment was conducted to investigate how long-term fertilization and rice straw incorporation into soil affect soil glomalin, C and N. The combined application of chemical fertilizer and straw resulted in a significant increase in both soil easily extractable glomalin (EEG) and total glomalin (TG) concentrations, as compared with application of only chemical fertilizer or no fertilizer application. The EEG and TG concentrations of the NPKS (nitrogen, phosphorus, and potassium fertilizer application + rice straw return) plot were 4.68% and 5.67% higher than those of the CK (unfertilized control) plot, and 9.87% and 6.23% higher than those of the NPK (nitrogen, phosphorus, and potassium fertilizer applied annually) plot, respectively. Application of only chemical fertilizer did not cause a statistically significant change of soil glomalin compared with no fertilizer application. The changes of soil organic C (SOC) and total N (TN) contents demonstrated a similar trend to soil glomalin in these plots. The SOC and TN contents of NPKS plot were 15.01% and 9.18% higher than those of the CK plot, and 8.85% and 14.76% higher than those of the NPK plot, respectively. Rice straw return also enhanced the contents of microbial biomass C (MBC) and microbial biomass N (MBN) in the NPKS plot by 7.76% for MBC and 31.42% for MBN compared with the CK plot, and 12.66% for MBC and 15.07% for MBN compared with the NPK plots, respectively. Application of only chemical fertilizer, however, increased MBN concentration, but decreased MBC concentration in soil. 展开更多
关键词 秸秆还田 土壤 碳素 氮素 球囊霉素 长期效应
下载PDF
上一页 1 2 165 下一页 到第
使用帮助 返回顶部