A micro amperometric immunosensor with the sensitive area of only 1mm^2 was fabricated on silicon using the technique of Micro-Electro-Mechanical Systems (MEMS).A double exposure of SU-8 photoresist process was develo...A micro amperometric immunosensor with the sensitive area of only 1mm^2 was fabricated on silicon using the technique of Micro-Electro-Mechanical Systems (MEMS).A double exposure of SU-8 photoresist process was developed to create both the sensitive pool and reaction pool.Antibody was immobilized via cross-linking with glutaraldehyde on the sensitive area of the electrode surface,which was electropolymerized with polypyrrole previously.The immunosensor was characterized by detection of human immunoglobulin G (HIgG).The immunosensor displayed a good linear response to HIgG concentrations between 5ng/ml and 255ng/ml and demonstrated a fast response time of 3 minutes.展开更多
Based on MEMS technology,immunosensor with an'Au,Pt,Pt'three-microelectrode system enclosed in a SU-8 micro pool was fabricated.Employing SAMs technique,the Au electrode was modified by cysteamine(Cys)to assem...Based on MEMS technology,immunosensor with an'Au,Pt,Pt'three-microelectrode system enclosed in a SU-8 micro pool was fabricated.Employing SAMs technique,the Au electrode was modified by cysteamine(Cys)to assemble gold nanopanicles(nanogold)layer,subsequently,a layer of protein G(PG)was immobilized on nanogold layer to further capture antibody orientedly.Compared with the immunosensors using bulky gold electrode and direct PG binding to electrode immobilization technique for antibody,it has attractive advantages,such as miniaturization,good compatibility,broad linear range for human immunoglobulin(HIgG)and easy to be designed into array.展开更多
An effective electrochemical signal amplification strategy based on enzyme membrane modification and redox probe immobilization was proposed to construct an amperometric immunosensor.L-cysteine@ferrocene functionalize...An effective electrochemical signal amplification strategy based on enzyme membrane modification and redox probe immobilization was proposed to construct an amperometric immunosensor.L-cysteine@ferrocene functionalized chitosan,which possessed not only efficient redox-activity but also excellent film-forming ability,was coated on the bare glass carbon electrode. Moreover,the thiol groups(SH)in the ferrocenyl compound were used for gold nanoparticles immobilization via the strong bonding interaction,which could further be utilized for the immobilization of antibody biomolecules with well-retained bioactivities.Finally,glucose oxidase(GOD)as the enzyme membrane was employed to block the possible remaining active sites and avoid the nonspecific adsorption.With the excellent electrocatalytic properties of GOD towards glucose,the amplification of antigen-antibody interaction and the enhanced sensitivity could be achieved.Under the optimal conditions,the linear range of the proposed immunosensor for the determination of carcinoembryonic antigen(CEA)was from 0.05 to 100 ng/mL with a detection limit of 0.02 ng/mL(S/N=3).Moreover,the immunosensor exhibited good selectivity,stability and reproducibility, which provided a promising potential for clinical immunoassay.展开更多
A novel amperometric immunosensor based on the micro electromechanical systems (MEMS) technology, using protein A and self-assembled monolayers (SAMs) for the orientation-controlled immobilization of antibodies, h...A novel amperometric immunosensor based on the micro electromechanical systems (MEMS) technology, using protein A and self-assembled monolayers (SAMs) for the orientation-controlled immobilization of antibodies, has been developed. Using MEMS technology, an "Au, Pt, Pt" three-microelectrode system enclosed in a SU-8 micro pool was fabricated. Employing SAMs, a monolayer of protein A was immobilized on the cysteamine modified Au electrode to achieve the orientation-controlled immobilization of the human immunoglobulin (HIgG) antibody. The immunosensor aimed at low unit cost, small dimension, high level of integration and the prospect of a biosensor system-on-a-chip. Cyclic voltammetry and chronoamperometry were conducted to characterize the immunosensor. Compared with the traditional immunosensor using bulky gold electrode or screen-printed electrode and the procedure directly binding protein A to electrode for immobilization of antibodies, it had attractive advantages, such as miniaturization, compatibility with CMOS technology, fast response (30 s), broad linear range (50-400 pg/L) and low detection limit (10 pg/L) for HIgG. In addition, this immunosensor was easy to be designed into micro array and to realize the simultaneously multi-parameter detection.展开更多
基金The authors greatly acknowledge the financial support from the National Natural Science Foundation of China (Grant No. 90307014)
文摘A micro amperometric immunosensor with the sensitive area of only 1mm^2 was fabricated on silicon using the technique of Micro-Electro-Mechanical Systems (MEMS).A double exposure of SU-8 photoresist process was developed to create both the sensitive pool and reaction pool.Antibody was immobilized via cross-linking with glutaraldehyde on the sensitive area of the electrode surface,which was electropolymerized with polypyrrole previously.The immunosensor was characterized by detection of human immunoglobulin G (HIgG).The immunosensor displayed a good linear response to HIgG concentrations between 5ng/ml and 255ng/ml and demonstrated a fast response time of 3 minutes.
基金This work is supported by the National Natural Science Foundation of China (Grant No. 90307014).
文摘Based on MEMS technology,immunosensor with an'Au,Pt,Pt'three-microelectrode system enclosed in a SU-8 micro pool was fabricated.Employing SAMs technique,the Au electrode was modified by cysteamine(Cys)to assemble gold nanopanicles(nanogold)layer,subsequently,a layer of protein G(PG)was immobilized on nanogold layer to further capture antibody orientedly.Compared with the immunosensors using bulky gold electrode and direct PG binding to electrode immobilization technique for antibody,it has attractive advantages,such as miniaturization,good compatibility,broad linear range for human immunoglobulin(HIgG)and easy to be designed into array.
基金financially supported by the National Natural Science Foundation of China(20675064)the Ministry of Education of China(708073)+1 种基金the Natural Science Foundation of Chongqing City (CSTC-2009BA1003)High Technology Project Foundation of Southwest University(XSGX 02)
文摘An effective electrochemical signal amplification strategy based on enzyme membrane modification and redox probe immobilization was proposed to construct an amperometric immunosensor.L-cysteine@ferrocene functionalized chitosan,which possessed not only efficient redox-activity but also excellent film-forming ability,was coated on the bare glass carbon electrode. Moreover,the thiol groups(SH)in the ferrocenyl compound were used for gold nanoparticles immobilization via the strong bonding interaction,which could further be utilized for the immobilization of antibody biomolecules with well-retained bioactivities.Finally,glucose oxidase(GOD)as the enzyme membrane was employed to block the possible remaining active sites and avoid the nonspecific adsorption.With the excellent electrocatalytic properties of GOD towards glucose,the amplification of antigen-antibody interaction and the enhanced sensitivity could be achieved.Under the optimal conditions,the linear range of the proposed immunosensor for the determination of carcinoembryonic antigen(CEA)was from 0.05 to 100 ng/mL with a detection limit of 0.02 ng/mL(S/N=3).Moreover,the immunosensor exhibited good selectivity,stability and reproducibility, which provided a promising potential for clinical immunoassay.
基金supported by the National Natural Science Foundation of China(Grant No.90307014).
文摘A novel amperometric immunosensor based on the micro electromechanical systems (MEMS) technology, using protein A and self-assembled monolayers (SAMs) for the orientation-controlled immobilization of antibodies, has been developed. Using MEMS technology, an "Au, Pt, Pt" three-microelectrode system enclosed in a SU-8 micro pool was fabricated. Employing SAMs, a monolayer of protein A was immobilized on the cysteamine modified Au electrode to achieve the orientation-controlled immobilization of the human immunoglobulin (HIgG) antibody. The immunosensor aimed at low unit cost, small dimension, high level of integration and the prospect of a biosensor system-on-a-chip. Cyclic voltammetry and chronoamperometry were conducted to characterize the immunosensor. Compared with the traditional immunosensor using bulky gold electrode or screen-printed electrode and the procedure directly binding protein A to electrode for immobilization of antibodies, it had attractive advantages, such as miniaturization, compatibility with CMOS technology, fast response (30 s), broad linear range (50-400 pg/L) and low detection limit (10 pg/L) for HIgG. In addition, this immunosensor was easy to be designed into micro array and to realize the simultaneously multi-parameter detection.