Acryloyl terminated Poly (ethyleneoxide)macromonomers (PEO-A) with different PEO chain lengths have been prepared by deactivation of PEO alkoxide with acryloyl chloride. A new kind of amphiphilic polystyrene-g-poly (e...Acryloyl terminated Poly (ethyleneoxide)macromonomers (PEO-A) with different PEO chain lengths have been prepared by deactivation of PEO alkoxide with acryloyl chloride. A new kind of amphiphilic polystyrene-g-poly (ethylene oxide)graft copolymer containing both microphase separated and PEO side chain structures has been synthesized from radical copolymerization of PEO-A macromonomer with styrene. After careful purification by a newly-developed method called 'selective dissolution', the well-defined structure of the purified copolymers was confirmed by IR, ~1H-NMR and GPC. Various experimental parameters controlling the copolymerization were studied in detail. The results indicated that the feed ratio of styrene to macromonomer(S/M) was the most important determining factor for the composition of the copolymers. A detailed 'comb- model' was proposed to describe the molecular structure of the graft copolymers. Finally, this amphiphilic graft copolymers may readily form microphase separated structures as clearly indicated by transmission electron microscopy.展开更多
Amphiphilic fluorosiloxane graft copolymers with a poly(dimethylsiloxane) (PDMS) backbone, a hydrophobic fluorosiloxane side-chain and three hydrophilic polyether side-chains were synthesized by hydrosilation reac...Amphiphilic fluorosiloxane graft copolymers with a poly(dimethylsiloxane) (PDMS) backbone, a hydrophobic fluorosiloxane side-chain and three hydrophilic polyether side-chains were synthesized by hydrosilation reaction in this work. The micellization of amphiphilic graft copolymers in the water/ethanol solvent system was investigated, and vesicles with different size were formed after the self-assembly system was aged for different time.展开更多
Amphiphilic graft copolymers are excellent additives for the development of antifouling membranes by nonsolvent induced phase separation. We report a convenient approach to the synthesis of novel graft copolymers with...Amphiphilic graft copolymers are excellent additives for the development of antifouling membranes by nonsolvent induced phase separation. We report a convenient approach to the synthesis of novel graft copolymers with hydrophobic polyacryloni- trile (PAN) backbones and hydrophilic poly(2-hydroxyethyl methacrylate) (PHEMA) side chains. Atom transfer radical polymerization (ATRP) of 2-hydroxyethyl methacrylate was carried out with poly(acrylonitrile-co-p-chloromethyl styrene) (PAN-co-PCMS) as a macroinitiator in the presence of CuC1/2,2'-bipyridine at 50 ~C in dimethyl sulfoxide. Kinetics of the graft polymerization was also evaluated. The synthesis of poly(acrylonitrile-co-p-chloromethyl styrene-g-2-hydroxyethyl methacrylate) (PAN-co-(PCMS-g-PHEMA)) can be relatively controlled when CMS (the ATRP sites) unit in the macroinitia- tor is around 5 mol%. Both the macroinitiators and graft copolymers were characterized by FTIR, NMR and GPC. The surface morphology and wettability of the copolymer films were studied by AFM and water contact angle measurement, respectively. We demonstrate that phase segregation between the PAN-co-PCMS backbones and the PHEMA side chains takes place and the surface hydrophilicity of the graft copolymers increases with the length of the PHEMA side chains. Because these am- phiphilic graft copolymers can be synthesized in mass, they will be useful as latent additives for the fabrication of advanced PAN separation membranes.展开更多
基金Supported by the National Natural Science Foundation of China and the State Education Committee of China
文摘Acryloyl terminated Poly (ethyleneoxide)macromonomers (PEO-A) with different PEO chain lengths have been prepared by deactivation of PEO alkoxide with acryloyl chloride. A new kind of amphiphilic polystyrene-g-poly (ethylene oxide)graft copolymer containing both microphase separated and PEO side chain structures has been synthesized from radical copolymerization of PEO-A macromonomer with styrene. After careful purification by a newly-developed method called 'selective dissolution', the well-defined structure of the purified copolymers was confirmed by IR, ~1H-NMR and GPC. Various experimental parameters controlling the copolymerization were studied in detail. The results indicated that the feed ratio of styrene to macromonomer(S/M) was the most important determining factor for the composition of the copolymers. A detailed 'comb- model' was proposed to describe the molecular structure of the graft copolymers. Finally, this amphiphilic graft copolymers may readily form microphase separated structures as clearly indicated by transmission electron microscopy.
基金supported by National Natural Science Foundation of China(No.20606029)Natural Science Foundation of Zhejiang Province(No.Y4090579)Science Foundation of Zhejiang Sci-Tech University (ZSTU)(No.0701652-Y)
文摘Amphiphilic fluorosiloxane graft copolymers with a poly(dimethylsiloxane) (PDMS) backbone, a hydrophobic fluorosiloxane side-chain and three hydrophilic polyether side-chains were synthesized by hydrosilation reaction in this work. The micellization of amphiphilic graft copolymers in the water/ethanol solvent system was investigated, and vesicles with different size were formed after the self-assembly system was aged for different time.
基金supported by the National Natural Science Foundation of China (21174124)
文摘Amphiphilic graft copolymers are excellent additives for the development of antifouling membranes by nonsolvent induced phase separation. We report a convenient approach to the synthesis of novel graft copolymers with hydrophobic polyacryloni- trile (PAN) backbones and hydrophilic poly(2-hydroxyethyl methacrylate) (PHEMA) side chains. Atom transfer radical polymerization (ATRP) of 2-hydroxyethyl methacrylate was carried out with poly(acrylonitrile-co-p-chloromethyl styrene) (PAN-co-PCMS) as a macroinitiator in the presence of CuC1/2,2'-bipyridine at 50 ~C in dimethyl sulfoxide. Kinetics of the graft polymerization was also evaluated. The synthesis of poly(acrylonitrile-co-p-chloromethyl styrene-g-2-hydroxyethyl methacrylate) (PAN-co-(PCMS-g-PHEMA)) can be relatively controlled when CMS (the ATRP sites) unit in the macroinitia- tor is around 5 mol%. Both the macroinitiators and graft copolymers were characterized by FTIR, NMR and GPC. The surface morphology and wettability of the copolymer films were studied by AFM and water contact angle measurement, respectively. We demonstrate that phase segregation between the PAN-co-PCMS backbones and the PHEMA side chains takes place and the surface hydrophilicity of the graft copolymers increases with the length of the PHEMA side chains. Because these am- phiphilic graft copolymers can be synthesized in mass, they will be useful as latent additives for the fabrication of advanced PAN separation membranes.