期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Study on the amplitude inversion of internal waves at Wenchang area of the South China Sea 被引量:11
1
作者 ZHANG Xudong WANG Jing +1 位作者 SUN Lina MENG Junmin 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2016年第7期14-19,共6页
The field experiment is conducted from April 16, 2005 to July 20, 2005 at Wenchang area east of Hainan Island (19~35'N, l12~E) of China. Internal wave packets are observed frequently with thermistor chains during t... The field experiment is conducted from April 16, 2005 to July 20, 2005 at Wenchang area east of Hainan Island (19~35'N, l12~E) of China. Internal wave packets are observed frequently with thermistor chains during the experiment. Meanwhile, internal waves are also detected from a synthetic aperture radar (SAR) image on June 19, 2005 and several other moderate-resolution imaging spectroradiometer (MODIS) images near a mooring position. The distance between the positive and negative peaks induced by the internal wave can be obtained from satellite images. Combined with remote sensing images and in situ data, a new method to inverse the amplitude of the internal wave is proposed based on a corrected nonlinear Schr6dinger (NLS) equation. Two relationships are given between the peak-to-peak distance and the characteristic wavelength of the internal wave for different nonlinear and dispersion coefficients. Based on the satellite images, the amplitude inversion of the internal waves are carried out with the NLS equation as well as the KdV equation. The calculated amplitudes of the NLS equation are close to the observation amplitude which promise the NLS equation a reliable method. 展开更多
关键词 internal wave amplitude inversion nonlinear SchrSdinger equation remote sensing image Wenchang area
下载PDF
The 3D magnetic structure beneath the continental margin of the northeastern South China Sea 被引量:4
2
作者 李淑玲 Yaoguo Li 孟小红 《Applied Geophysics》 SCIE CSCD 2012年第3期237-246,359,共11页
Understanding the continental margin of the Northeastern South China Sea is critical to the study of deep structures, tectonic evolution, and dynamics of the region. One set of important data for this endeavor is the ... Understanding the continental margin of the Northeastern South China Sea is critical to the study of deep structures, tectonic evolution, and dynamics of the region. One set of important data for this endeavor is the total-field magnetic data. Given the challenges associated with the magnetic data at low latitudes and with remanent magnetism in this area, we combine the equivalent-source technique and magnetic amplitude inversion to recover 3D subsurface magnetic structures. The inversion results show that this area is characterized by a north-south block division and east-west zonation. Magnetic regions strike in EW, NE and NW direction and are consistent with major tectonic trends in the region. The highly magnetic zone recovered from inversion in the continental margin differs visibly from that of the magnetically quiet zones to the south. The magnetic anomaly zone strikes in NE direction, covering an area of about 500 km × 60 km, and extending downward to a depth of 25 km or more. In combination with other geophysical data, we suggest that this strongly magnetic zone was produced by deep underplating of magma associated with plate subduction in Mesozoic period. The magnetically quiet zone in the south is an EW trending unit underlain by broad and gentle magnetic layers of lower crust. Its magnetic structure bears a clear resemblance to oceanic crust, assumed to be related to the presence of ancient oceanic crust there. 展开更多
关键词 Continental margin of the northeastern South China Sea magnetic anomalies amplitude inversion 3D magnetic structure
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部